精英家教網 > 高中數學 > 題目詳情
17.若集合P={x|log2x<2},Q={1,2,3},則P∩Q=( 。
A.{1,2}B.{1}C.{2,3}D.{1,2,3}

分析 求出P中不等式的解集,確定P,找出兩集合的交集即可.

解答 解:P={x|log2x<2}=(0,4),Q={1,2,3},
則P∩Q={1,2,3},
故選:D.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

7.已知函數f(x)=$\left\{\begin{array}{l}f(x+5),x>2\\{e^x},-2≤x≤2\\ f(-x),x<-2\end{array}$,則f(-2016)=( 。
A.e2B.eC.1D.$\frac{1}{e}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.若函數f(x)=$\left\{\begin{array}{l}{x^2}+1(x>0)\\ π(x=0)\\ 0(x<0)\end{array}$,則f(f(f(-2016)))=π2+1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.數列{an}中,a1=1,an+1=an+2(n∈N*),求a8的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.已知三角形ABC內的一點D滿足$\overrightarrow{DA}$•$\overrightarrow{DB}$=$\overrightarrow{DB}$•$\overrightarrow{DC$=$\overrightarrow{DC}$•$\overrightarrow{DA}$=-2,且|$\overrightarrow{DA}$|=|$\overrightarrow{DB}$|=|$\overrightarrow{DC}$|.平面ABC內的動點P,M滿足|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,則|$\overrightarrow{BM}$|2的最大值是( 。
A.$\frac{49}{4}$B.$\frac{43}{4}$C.$\frac{{37+6\sqrt{3}}}{4}$D.$\frac{{37+2\sqrt{33}}}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.雙曲線$\frac{x^2}{m+1}$+$\frac{y^2}{1-2m}$=1的焦點在y軸上,則m的取值范圍是( 。
A.m<-1B.$-1<m<\frac{1}{2}$C.$m<\frac{1}{2}$D.$m>\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.設函數f(x)=-4x+2x+1-1,g(x)=lg(ax2-4x+1),若對任意x1∈R,都存在x2∈R,使f(x1)=g(x2),則實數a的取值范圍為( 。
A.(0,4]B.(-∞,4]C.(-4,0]D.[4,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.在△ABC中,a,b,c分別為內角A,B,C的對邊,5a2-5c2=5b2-8bc,邊b,c是關于x的方程:x2-(12tanA)x+25cosA=0的兩個根(b<c),D為△ABC內任一點,點D到三邊的距離和為d.
(1)求邊a,b,c;
(2)求d的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.等差數列{an}中,a4=20,a6=12,則{an}的前9項和S9=144.

查看答案和解析>>

同步練習冊答案