17.sin315°的值為( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

分析 直接利用誘導公式化簡求解即可.

解答 解:sin315°=sin(360°-45°)=-sin45°=-$\frac{\sqrt{2}}{2}$.
故選:D.

點評 本題考查誘導公式以及特殊角的三角函數(shù)值的求法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.二項式${(3{x^2}-\frac{2}{{\root{3}{x}}})^7}$展開式中含有常數(shù)項,則常數(shù)項是第( 。╉棧
A.6B.5C.8D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知直線l經(jīng)過直線x-y+2=0和2x+y+1=0的交點,且直線l與直線x-3y+2=0平行,則直線l的方程為x-3y+4=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知正項等比數(shù)列{an}的前n項和為Sn,且$\frac{S_4}{S_2}$=10,a3=9.
(1)求數(shù)列{an}的通項公式與前n項和為Sn;
(2)若數(shù)列{bn}的通項公式為$\frac{b_n}{{2{a_n}}}$=n-3,
(ⅰ)求數(shù)列{bn}的前n項和為Tn;
(ⅱ)探究:數(shù)列{bn}是否有最小項?若沒有,請通過計算得到最小項的項數(shù);若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某單位有男職工600名,女職工400人,在單位想了解本單位職工的運動狀態(tài),根據(jù)性別采取分層抽樣的方法從全體職工中抽取100人,調(diào)查他們平均每天運動的時間(單位:小時),統(tǒng)計表明該單位職工平均每天運動的時間范圍是[0,2].若規(guī)定平均每天運動的時間不少于1小時的為“運動達人”,低于1小時的為“非運動達人”.根據(jù)調(diào)查的數(shù)據(jù),按性別與是否為運動達人進行統(tǒng)計,得到如下2×2列聯(lián)表.
運動時間
性別
運動達人非運動達人合計
36
26
合計100
(Ⅰ)請根據(jù)題目信息,將2×2列聯(lián)表中的數(shù)據(jù)補充完整,并通過計算判斷能否在犯錯誤概率不超過0.025的前提下認為性別與是否為運動達人有關;
(Ⅱ)將此樣本的頻率估計為總體的概率,隨機調(diào)查該單位的3名男職工,設調(diào)查的3人中運動達人的人數(shù)為隨機變量X,求X的分布列和數(shù)學期望E(X)及方差D(X).
附表及公式:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 
 k0 2.0722.706 3.841  5.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若x≠y,且x,a1,a2,a3,y與x,b1,b2,b3,b4,y各成等差數(shù)列,則$\frac{{a}_{2}-{a}_{1}}{_{2}-_{1}}$的值為(  )
A.1B.$\frac{4}{5}$C.$\frac{5}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知等差數(shù)列{an}的前n項和記為Sn,若a4+a6+a8=15,則S11的值為( 。
A.55B.$\frac{55}{2}$C.165D.$\frac{165}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知數(shù)列$\sqrt{2},\sqrt{5},2\sqrt{2},\sqrt{11}$,…則$2\sqrt{17}$是它的第( 。╉棧
A.21B.22C.23D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設數(shù)列{an}滿足:a1=$\frac{1}{2}$,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$(n≥1),則a2016=-$\frac{1}{3}$.

查看答案和解析>>

同步練習冊答案