【題目】在Rt△ABC中,CA=CB=2,M,N是斜邊AB上的兩個(gè)動(dòng)點(diǎn),且MN= ,則 的取值范圍為

【答案】[ ,2]
【解析】解:以C為坐標(biāo)原點(diǎn),CA為x軸建立平面坐標(biāo)系,
則A(2,0),B(0,2),
∴AB所在直線的方程為: ,則y=2﹣x,
設(shè)M(a,2﹣a),N(b,2﹣b),且0≤a≤2,0≤b≤2不妨設(shè)a>b,
∵M(jìn)N=
∴(a﹣b)2+(b﹣a)2=2,
∴a﹣b=1,
∴a=b+1,
∴0≤b≤1
=(a,2﹣a)(b,2﹣b)
=2ab﹣2(a+b)+4
=2(b2﹣b+1),0≤b≤1
∴當(dāng)b=0或b=1時(shí)有最大值2;
當(dāng)b= 時(shí)有最小值
的取值范圍為[ ,2]
所以答案是[ ,2]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為建立健全國(guó)家學(xué)生體質(zhì)健康監(jiān)測(cè)評(píng)價(jià)機(jī)制,激勵(lì)學(xué)生積極參加身體鍛煉,教育部印發(fā)《國(guó)家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)(2014年修訂)》,要求各學(xué)校每學(xué)期開展覆蓋本校各年級(jí)學(xué)生的《標(biāo)準(zhǔn)》測(cè)試工作,并根據(jù)學(xué)生每個(gè)學(xué)期總分評(píng)定等級(jí).某校決定針對(duì)高中學(xué)生,每學(xué)期進(jìn)行一次體質(zhì)健康測(cè)試,以下是小明同學(xué)六個(gè)學(xué)期體質(zhì)健康測(cè)試的總分情況.

學(xué)期

1

2

3

4

5

6

總分(分)

512

518

523

528

534

535

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用相關(guān)系數(shù)說(shuō)明的線性相關(guān)程度,并用最小二乘法求出關(guān)于的線性回歸方程(線性相關(guān)系數(shù)保留兩位小數(shù));

(2)在第六個(gè)學(xué)期測(cè)試中學(xué)校根據(jù) 《標(biāo)準(zhǔn)》,劃定540分以上為優(yōu)秀等級(jí),已知小明所在的學(xué)習(xí)小組10個(gè)同學(xué)有6個(gè)被評(píng)定為優(yōu)秀,測(cè)試后同學(xué)們都知道了自己的總分但不知道別人的總分,小明隨機(jī)的給小組內(nèi)4個(gè)同學(xué)打電話詢問(wèn)對(duì)方成績(jī),優(yōu)秀的同學(xué)有人,求的分布列和期望.

參考公式: ,;

相關(guān)系數(shù);

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確的命題是( )

A.若存在,當(dāng)時(shí),有,則說(shuō)函數(shù)在區(qū)間上是增函數(shù):

B.若存在,、),當(dāng)時(shí),有,則說(shuō)函數(shù)在區(qū)間上是增函數(shù);

C.函數(shù)的定義域?yàn)?/span>,若對(duì)任意的,都有,則函數(shù)上一定是減函數(shù):

D.若對(duì)任意,當(dāng)時(shí),有,則說(shuō)函數(shù)在區(qū)間上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐P﹣ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2,M是棱PB上一點(diǎn).
(Ⅰ)若BM=2MP,求證:PD∥平面MAC;
(Ⅱ)若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求證:PA⊥平面ABCD;
(Ⅲ)在(Ⅱ)的條件下,若二面角B﹣AC﹣M的余弦值為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=a(x﹣1)2+lnx+1,g(x)=f(x)﹣x,其中a∈R.
(Ⅰ)當(dāng)a=﹣ 時(shí),求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>0時(shí),求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈[1,+∞)時(shí),若y=f(x)圖象上的點(diǎn)都在 所表示的平面區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是奇函數(shù).

(1)求a的值和函數(shù)f(x)的定義域;

(2)解不等式f(-m2+2m-1)+f(m2+3)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=a(x﹣1)2+lnx+1,g(x)=f(x)﹣x,其中a∈R.
(Ⅰ)當(dāng)a=﹣ 時(shí),求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>0時(shí),求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈[1,+∞)時(shí),若y=f(x)圖象上的點(diǎn)都在 所表示的平面區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=9x﹣2a3x+3:

(1)若a=1,x[0,1]時(shí),求fx)的值域;

(2)當(dāng)x[﹣1,1]時(shí),求fx)的最小值ha);

(3)是否存在實(shí)數(shù)m、n,同時(shí)滿足下列條件:①n>m>3;②當(dāng)h(a)的定義域?yàn)?/span>[m,n]時(shí),其值域?yàn)?/span>[m2,n2],若存在,求出m、n的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ex , g(x)=kx+1.
(I)求函數(shù)y=f(x)﹣(x+1)的最小值;
(II)證明:當(dāng)k>1時(shí),存在x0>0,使對(duì)于任意x∈(0,x0)都有f(x)<g(x);
(III)若存在實(shí)數(shù)m使對(duì)任意x∈(0,m)都有|f(x)﹣g(x)|>x成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案