20.已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x 軸上,離心率為$\frac{1}{2}$,短軸的一個(gè)端點(diǎn)為(0,$\sqrt{3}$).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線 l的斜率存在,且與橢圓C相交于A、B兩點(diǎn)(A、B異于頂點(diǎn)),且以AB為直徑的圓過(guò)橢圓的右頂點(diǎn),求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

分析 (1)由e=$\frac{c}{a}$=$\frac{1}{2}$,即a=2c,b=$\sqrt{3}$,根據(jù)橢圓的性質(zhì),即可求得a和c的值,求得橢圓的標(biāo)準(zhǔn)方程;
(2)將直線l的方程與橢圓的方程聯(lián)立可得根與系數(shù)的關(guān)系,再利用以AB為直徑的圓過(guò)橢圓的右頂點(diǎn)D,可得kAD•kBD=-1,即可得出m與k的關(guān)系,從而得出答案.

解答 解:(1)由題意可知:設(shè)橢圓方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),
e=$\frac{c}{a}$=$\frac{1}{2}$,即a=2c,b=$\sqrt{3}$,
由a2=b2+c2,解得:a=2,c=1,
橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)設(shè)直線l的方程為y=kx+m,A(x1,y1),B(x2,y2),右頂點(diǎn)為D,
由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$得(3+4k2)x2+8mkx+4(m2-3)=0,
△=64m2k2-16(3+4k2)(m2-3)>0,化為3+4k2>m2
∴x1+x2=$\frac{-8mk}{3+4{k}^{2}}$,x1•x2=$\frac{4({m}^{2}-3)}{3+4{k}^{2}}$,
y1y2=(kx1+m)(kx2+m)=k2x1•x2+mk(x1+x2)+m2=$\frac{3({m}^{2}-4{k}^{2})}{3+4{k}^{2}}$,
∵以AB為直徑的圓過(guò)橢圓的右頂點(diǎn)D(2,0),kAD•kBD=-1,
∴$\frac{{y}_{1}}{{x}_{1}-2}$•$\frac{{y}_{2}}{{x}_{2}-2}$=-1,
∴y1y2+x1x2-2(x1+x2)+4=0,
∴$\frac{3({m}^{2}-4{k}^{2})}{3+4{k}^{2}}$+$\frac{4({m}^{2}-3)}{3+4{k}^{2}}$+$\frac{16mk}{3+4{k}^{2}}$+4=0.
化為7m2+16mk+4k2=0,解得m1=-2k,m2=-$\frac{2k}{7}$,
當(dāng)m1=-2k,時(shí),直線l的方程為y=k(x-2),直線過(guò)定點(diǎn)(2,0)矛盾;
當(dāng)m2=-$\frac{2k}{7}$時(shí),直線l的方程為y=k(x-$\frac{2}{7}$),直線過(guò)定點(diǎn)($\frac{2}{7}$,0).
∴直線過(guò)定點(diǎn)($\frac{2}{7}$,0).

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓的位置關(guān)系轉(zhuǎn)化為方程聯(lián)立得到根與系數(shù)的關(guān)系、圓的性質(zhì)、兩點(diǎn)間的距離公式等基礎(chǔ)知識(shí)與基本技能方法,考查了推理能力和計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=ax+$\frac{a}{x}$+(1-a2)lnx,a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若y=f(x)在x=1處的切線斜率為1.
①設(shè)g(x)=xf(x)+(t-x)f(t-x)(其中t為正常數(shù)),求函數(shù)g(x)的最小值;
②若m>0,n>0,證明:mf(m)+nf(n)≥(m+n)[f(m+n)-ln2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知直線l1:2x+y-2=0,l2:ax+4y+1=0,若l1∥l2,則a的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=$\frac{x}{x-1}$在區(qū)間[2,5]上的最大值與最小值的差記為fmax-min,若fmax-min+a2-2a≤0恒成立,則a的取值范圍是( 。
A.[$\frac{1}{2}$,$\frac{3}{2}$]B.[1,2]C.[0,1]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在集合D上都有意義的兩個(gè)函數(shù)f(x)與g(x),如果對(duì)任意x∈D,都有|f(x)-g(x)|≤1,則稱f(x)與g(x)在集合D上是緣分函數(shù),集合D稱為緣分區(qū)域.若f(x)=x2+3x+2與g(x)=2x+3在區(qū)間[a,b]上是緣分函數(shù),則緣分區(qū)域D是( 。
A.[-2,-1]∪[1,2]B.[-2,-1]∪[0,1]C.[-2,0]∪[1,2]D.[-1,0]∪[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,如果運(yùn)行結(jié)果為720,那么判斷框中應(yīng)填入( 。
A.k<6?B.k<7?C.k>6?D.k>7?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)g(x)=(2-a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x),其中h′(x)是函數(shù)h(x)的導(dǎo)函數(shù).
(Ⅰ)當(dāng)a=0時(shí),求f(x)的極值;
(Ⅱ)當(dāng)-8<a<-2時(shí),若存在x1,x2∈[1,3],使得|f(x1)-f(x2)|>(m+ln3)a-2ln3+$\frac{2}{3}$ln(-a) 恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.某人駕車(chē)遇到險(xiǎn)情而緊急制動(dòng)并以速度v(t)=120-60t(t為事件單位s)形式至停止,則從開(kāi)始制動(dòng)到汽車(chē)完全停止所形式的距離(單位:m)為( 。
A.100B.150C.120D.160

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.化簡(jiǎn):
(1)$\frac{{{{sin}^2}(α+π)cos(π+α)cos(-α-2π)}}{{tan(π+α){{sin}^3}(\frac{π}{2}+α)sin(-α-2π)}}$;
(2)$\frac{{\sqrt{1+2sin{{20}°}cos{{160}°}}}}{{sin{{160}°}-\sqrt{1-{{sin}^2}{{20}°}}}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案