7.下列各式中,值為$\frac{{\sqrt{3}}}{2}$的是( 。
A.2sin15°cos15°B.2sin215°-1C.cos215°-sin215°D.sin230°+cos230°

分析 求出選項(xiàng)的函數(shù)值,即可判斷結(jié)果.

解答 解:2sin15°cos15°=sin30$°=\frac{1}{2}$,
2sin215°-1=-cos30°=$-\frac{\sqrt{3}}{2}$;
cos215°-sin215°=cos30°=$\frac{\sqrt{3}}{2}$,
sin230°+cos230°=1.
故選:C.

點(diǎn)評 本題考查二倍角公式的應(yīng)用,三角函數(shù)的化簡求值,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.將函數(shù)f(x)=2cos2x的圖象向右平移$\frac{π}{6}$個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0,$\frac{a}{3}$]和[2a,$\frac{7π}{6}$]上均單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.[$\frac{π}{3}$,$\frac{π}{2}$]B.[$\frac{π}{6}$,$\frac{π}{2}$]C.[$\frac{π}{6}$,$\frac{π}{3}$]D.[$\frac{π}{4}$,$\frac{3π}{8}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列命題是真命題的是( 。
A.若a2=4,則a=2B.若a=b,則$\sqrt{a}$=$\sqrt$C.若$\frac{1}{a}$=$\frac{1}$,則a=bD.若a<b,則a2<b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若集合A={x|kx2+4x+4=0,k∈R}只有一個(gè)元素,則k的值為( 。
A.1B.0C.0或1D.以上答案都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在(x+$\frac{3}{\sqrt{x}}$)n的展開式中,各項(xiàng)系數(shù)與二項(xiàng)式系數(shù)和之比為64,則x3的系數(shù)為(  )
A.15B.45C.135D.405

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知鈍角三角形ABC的面積是$\frac{1}{2}$,c=1,a=$\sqrt{2}$,則b=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=(a+$\frac{1}{a}$)lnx+$\frac{1}{x}$-x(a>0).
(1)求f(x)的極值點(diǎn);
(2)若曲線 y=f(x)上總存在不同兩點(diǎn)P(x1,f(x1)),Q(x2,f(x2)),使得曲線y=f(x)在P,Q兩點(diǎn)處的切線互相平行,證明:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知角θ的終邊過點(diǎn)(2,3),則tan(${\frac{7π}{4}$+θ)等于( 。
A.-$\frac{1}{5}$B.$\frac{1}{5}$C.-5D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一個(gè)路口的紅綠燈,紅燈的時(shí)間為30秒,黃燈的時(shí)間為5秒,綠燈的時(shí)間為40秒,當(dāng)你到達(dá)路口時(shí),不需要等待就可以過馬路的概率為(  )
A.$\frac{1}{15}$B.$\frac{2}{5}$C.$\frac{8}{15}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊答案