分析 (1)取BC的中點E,連接AE,DE,通過證明BC⊥平面ADE得出BC⊥AD;
(2)VA-BCD=VB-ADE+VC-ADE=$\frac{1}{3}$S△ADE•BC.
解答 證明:(1)取BC的中點E,連接AE,DE.
∵三棱錐A-BCD是正三棱錐,
∴AE⊥BC,DE⊥BC,
又AE?平面ADE,DE?平面ADE,AE∩DE=E,
∴BC⊥平面ADE,
又AD?平面ADE,
∴BC⊥AD.
(2)∵AB=BC=$\sqrt{6}$,∴BE=$\frac{\sqrt{6}}{2}$,AD=$\sqrt{6}$,
∴AE=DE=$\frac{3\sqrt{2}}{2}$,
∴cos∠AED=$\frac{A{E}^{2}+D{E}^{2}-A{D}^{2}}{2AE•DE}$=$\frac{1}{3}$,∴sin∠AED=$\frac{2\sqrt{2}}{3}$.
∴S△ADE=$\frac{1}{2}$AE•DE•sin∠AED=$\frac{1}{2}×\frac{3\sqrt{2}}{2}×\frac{3\sqrt{2}}{2}×\frac{2\sqrt{2}}{3}$=$\frac{3\sqrt{2}}{2}$.
∴VA-BCD=VB-ADE+VC-ADE=$\frac{1}{3}$S△ADE•BC=$\frac{1}{3}×\frac{3\sqrt{2}}{2}×\sqrt{6}$=$\sqrt{3}$.
點評 本題考查了線面垂直的判定與性質(zhì),棱錐的體積計算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{9}{4}$ | B. | $\frac{9}{16}$ | C. | $\frac{9}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 4 | C. | $\frac{9}{4}$ | D. | -$\frac{9}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | ±5 | C. | 10 | D. | ±10 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com