分析 (1)容易求出$\overrightarrow{m}•\overrightarrow{n}=sin(A+B)=sin2C$,進(jìn)而得到sinC=sin2C,從而求得cosC=$\frac{1}{2}$,根據(jù)C的范圍即可得出$C=\frac{π}{3}$;
(2)先得到$\overrightarrow{CD}=\frac{1}{2}(\overrightarrow{CA}+\overrightarrow{CB})$,而根據(jù)條件及基本不等式可得到$|\overrightarrow{CA}||\overrightarrow{CB}|≤1$,從而${\overrightarrow{CD}}^{2}=\frac{1}{4}(\overrightarrow{CA}+\overrightarrow{CB})^{2}$,進(jìn)行數(shù)量積的運算,并由完全平方公式可得到${\overrightarrow{CD}}^{2}$=$1-\frac{1}{4}|\overrightarrow{CA}||\overrightarrow{CB}|$,從而可以求出${\overrightarrow{CD}}^{2}≥\frac{3}{4}$,進(jìn)而即可求出$|\overrightarrow{CD}|$的最小值.
解答 解:(1)$\overrightarrow{m}•\overrightarrow{n}=sinAcosB+cosAsinB=sin(A+B)=sin2C$;
A+B=π-C,0<C<π;
∴sin(A+B)=sinC=sin2C;
∴sinC=2sinCcosC;
∴$cosC=\frac{1}{2}$,C=$\frac{π}{3}$;
(2)$\overrightarrow{CD}=\frac{1}{2}(\overrightarrow{CA}+\overrightarrow{CB})$,且$|\overrightarrow{CA}|+|\overrightarrow{CB}|=2$;
∴$|\overrightarrow{CA}||\overrightarrow{CB}|≤(\frac{|\overrightarrow{CA}|+|\overrightarrow{CB}|}{2})=1$;
∴${\overrightarrow{CD}}^{2}=\frac{1}{4}(|{\overrightarrow{CA}|}^{2}+|\overrightarrow{CA}||\overrightarrow{CB}|+|\overrightarrow{CB}{|}^{2})$
=$\frac{1}{4}(|\overrightarrow{CA}|+|\overrightarrow{CB}|)^{2}-\frac{1}{4}|\overrightarrow{CA}||\overrightarrow{CB}|$
=$1-\frac{1}{4}|\overrightarrow{CA}||\overrightarrow{CB}|$
$≥1-\frac{1}{4}$
=$\frac{3}{4}$;
∴$|\overrightarrow{CD}|≥\frac{\sqrt{3}}{2}$;
即$|\overrightarrow{CD}|$的最小值為$\frac{\sqrt{3}}{2}$.
點評 考查向量數(shù)量積的坐標(biāo)運算,向量數(shù)量積的計算公式,兩角和的正弦公式,以及完全平方公式,基本不等式,以及不等式的性質(zhì).
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k>8 | B. | k≥8 | C. | k>16 | D. | k≥16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com