3.命題“?x>0,x2+x-2>0”的否定是?x>0,x2+x-2≤0.

分析 直接利用特稱命題的否定是全稱命題寫出結(jié)果即可.

解答 解:因?yàn)樘胤Q命題的否定是全稱命題,所以,命題“?x>0,x2+x-2>0”的否定是:?x>0,x2+x-2≤0.
故答案為:?x>0,x2+x-2≤0.

點(diǎn)評(píng) 本題考查命題的否定全稱命題與特稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若數(shù)列{an}滿足an+1+(-1)nan=2n-1,則an+2+an=$\left\{\begin{array}{l}{2}&{n是奇數(shù)}\\{4n}&{n是偶數(shù)}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow{a}$與$\overrightarrow$滿足|$\overrightarrow{a}$|=10,|$\overrightarrow$|=3,且向量$\overrightarrow{a}$與$\overrightarrow$的夾角為120°.求:
(1)(2$\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$);
(2)|$\overrightarrow{a}$+3$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.當(dāng)a(a>0)取何值時(shí),直線x+y-2a+1=0與圓x2+y2-2ax+2y+a2-a+1=0 相切,相離,相交?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=2cosxsinx+$\sqrt{3}$(2cos2x-1).
(1)求f(x)的最大值;
(2)求f(2x)的最小正周期與單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若P是以F1,F(xiàn)2為焦點(diǎn)的橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一點(diǎn),則三角形PF1F2的周長(zhǎng)等于18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)等比數(shù)列{an}滿足a1+a3=10,a2+a4=5,則a1a2…an的最大值為( 。
A.61B.62C.63D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)函數(shù)f(x)=ln(x+$\sqrt{{x}^{2}+1}$),則對(duì)任意實(shí)數(shù)a,b,a+b≥0是f(a)+f(b)≥0的( 。
A.充分必要條件B.充分而非必要條件
C.必要而非充分條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow{m}$=(sinA,sinB),$\overrightarrow{n}$=(cosB,cosA),$\overrightarrow{m}$•$\overrightarrow{n}$=sin2C,
且A、B、C分別為△ABC的三邊a、b、c所對(duì)的角.
(1)求角C的大;
(2)若a+b=2,設(shè)D為AB邊上中點(diǎn),求|$\overrightarrow{CD}$|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案