9.(2x+$\frac{1}{x}$)n的二項(xiàng)式系數(shù)的和是32,則該二項(xiàng)展開式中x3的系數(shù)是80(用數(shù)字填寫答案).

分析 由題意可得:2n=32,解得n.再利用其通項(xiàng)公式即可得出.

解答 解:由題意可得:2n=32,解得n=5.
∴$(2x+\frac{1}{x})^{5}$的通項(xiàng)公式Tr+1=${∁}_{5}^{r}$(2x)5-r$(\frac{1}{x})^{r}$=25-r${∁}_{5}^{r}$x5-2r
令5-2r=3,解得r=1.
∴該二項(xiàng)展開式中x3的系數(shù)=24${∁}_{5}^{1}$=80.
故答案為:80.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}-x+1,x≥1\\ 2x+a,x<1\end{array}$,若存在a≠0且f(1-a)=f(1+a),則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.從1,3,5,7中任取2個(gè)數(shù)字,從0,2,4,6,8中任取2個(gè)數(shù)字,組成沒有重復(fù)數(shù)字的四位數(shù),其中能被5整除的四位數(shù)共有( 。﹤(gè).
A.192B.228C.300D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=cos2x-sin2x+2sinxcosx(x∈R)的最小正周期為π,單調(diào)遞減區(qū)間為$[kπ+\frac{π}{8},kπ+\frac{5π}{8}](k∈Z)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}中,a1=1,an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$(n∈N+).
(Ⅰ)求a2,a3,a4的值,猜想數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)運(yùn)用(Ⅰ)中的猜想,寫出用三段論證明數(shù)列{$\frac{1}{{a}_{n}}$}是等差數(shù)列時(shí)的大前提、小前提和結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=x4+x-1,則f′(1)+f′(-1)等于(  )
A.-2B.-4C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若x,y滿足$\left\{\begin{array}{l}{y≤1}\\{x-y-1≤0}\\{x+y-1≥0}\end{array}\right.$,則z=$\sqrt{3}$x+y的最大值為2$\sqrt{3}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|-1≤x≤2},B={x|x-4≤0},則A∪B=( 。
A.{x|-1≤x<4}B.{x|2≤x<4}C.{x|x≥-1}D.{x|x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若tanθ+$\frac{1}{tanθ}$=6,則sin2θ=( 。
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案