2.已知|$\overrightarrow{a}$|=6,|$\overrightarrow$|=5,$\overrightarrow{a}$•$\overrightarrow$=15,則向量$\overrightarrow{a}$與向量$\overrightarrow$的夾角為$\frac{π}{3}$.

分析 直接把已知代入數(shù)量積求夾角公式得答案.

解答 解:由|$\overrightarrow{a}$|=6,|$\overrightarrow$|=5,$\overrightarrow{a}$•$\overrightarrow$=15,得:
cos$<\overrightarrow{a},\overrightarrow>$=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}=\frac{15}{6×5}=\frac{1}{2}$,
∵<$\overrightarrow{a},\overrightarrow$>∈[0,π],∴<$\overrightarrow{a},\overrightarrow$>=$\frac{π}{3}$.
故答案為:$\frac{π}{3}$.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查了由數(shù)量積求向量的夾角,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知服從正態(tài)分布N(μ,σ2)的隨機(jī)變量在區(qū)間(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)內(nèi)取值的概率分別為68.26%,95.44%,和99.74%.某正態(tài)曲線的密度函數(shù)是偶函數(shù),而且該函數(shù)的最大值為
$\frac{1}{2\sqrt{2π}}$,則總體位于區(qū)間[-4,-2]的概率0.1359.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)p:x2-3x+2>0,q:$\frac{{{x^2}-1}}{|x|-2}$>0,則p是q( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.定義在(0,+∞)上的單調(diào)函數(shù)f(x),?x∈(0,+∞),f[f(x)-lnx]=1,則方程f(x)-f′(x)=1的解所在區(qū)間是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.解方程:
(1)C9x=C92x-3
(2)A8x=6A8x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列說(shuō)法中,不正確的是( 。
A.已知a,b,m∈R,命題“若am2<bm2,則a<b”為真命題
B.命題“p或q”為真命題,則命題p和命題q均為真命題
C.命題“?x0∈R,x02-x0>0”的否定是:“?x∈R,x2-x≤0”
D.“x>3”是“x>2”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.若m,n∈R,分別求適合下列條件的m,n值.
(1)(2m+2n)-2i=4+(m-n)i;
(2)(m+3)i-n-2+$\frac{1}{i}$=0;
(3)$\frac{(1+m-3i)+(2+3ni)}{3+2i}$=i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若a,b∈R,則下列恒成立的不等式是( 。
A.$\frac{{|{a+b}|}}{2}$≥$\sqrt{|{ab}|}$B.$\frac{a}$+$\frac{a}$≥2C.$\frac{{{a^2}+{b^2}}}{2}$≥(${\frac{a+b}{2}}$)2D.(a+b)($\frac{1}{a}$+$\frac{1}$)≥4(a+b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在平面直角坐標(biāo)系中,點(diǎn)A(0,2)和點(diǎn)B(3,5)到直線λ的距離都是3,則符合條件的直線λ共有( 。l.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案