15.①已知sin($\frac{7}{2}π$-α)=-$\frac{1}{2}$,求sin2($\frac{9}{2}$π-α)+cos(3π-α)的值;
②化簡:$\frac{{sin(α-\frac{π}{2})cos(\frac{3}{2}π+α)tan(π-α)}}{tan(-π-α)sin(-π-α)}$.

分析 (1)利用誘導(dǎo)公式得到cosα=$\frac{1}{2}$.然后由誘導(dǎo)公式化簡所求的代數(shù)式并代入求值即可;
(2)利用誘導(dǎo)公式分別對分子、分母進行化簡,然后約分即可.

解答 解:(1)由$sin(\frac{7}{2}π-α)=-\frac{1}{2}$得,cosα=$\frac{1}{2}$.
${sin^2}(\frac{9}{2}π-α)+cos(3π-α)$=cos2α-cosα=$-\frac{1}{4}$;
(2)$\frac{{sin(α-\frac{π}{2})cos(\frac{3}{2}π+α)tan(π-α)}}{tan(-π-α)sin(-π-α)}$,
=$\frac{{({-cosα})sinα({-tanα})}}{{({-tanα})sinα}}$,
=-cosα.

點評 本題考查了三角函數(shù)的化簡求值.化簡時要看“結(jié)構(gòu)特征”,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,常見的有“遇到分式要通分”等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.給出下列命題:
①從2004名學(xué)生中抽取50名組成參觀團,先用簡單隨機抽樣從2 004人中剔除4人,剩下的2000人再按系統(tǒng)抽樣的方法進行,則每人入選的概率相等.
②某單位有職工52人,現(xiàn)將所有職工按l、2、3、…、52隨機編號,現(xiàn)采用系統(tǒng)抽樣的方法抽取一個容量為4的樣本.已知6號、32號、45號職工在樣本中,則樣本中另外一個職工的編號是19號.
③某社區(qū)有600戶家庭,其中高收入家庭150戶,中等收入家庭360戶,低收入家庭90戶.為了調(diào)查購買力的某項指標,用分層抽樣的方法從中抽取一個容量為100的樣本,則中等收入家庭應(yīng)抽取60戶.
④已知數(shù)據(jù)x1,x2,…,xn的方差s2=4,則數(shù)據(jù)-3x1+5,-3x2+5,…,-3xn+5的標準差為6.
其中正確結(jié)論的序號是①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知點$M({\sqrt{2},1})$,點N在圓O:x2+y2=1上,則∠OMN的最大值為( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知△ABC的內(nèi)角B滿足2cos2B-8cosB+5=0,若$\overrightarrow{BC}$=$\overrightarrow a$,$\overrightarrow{CA}$=$\overrightarrow b$且$\overrightarrow a$,$\overrightarrow b$滿足:$\overrightarrow a$•$\overrightarrow b$=-9,|$\overrightarrow a$|=3,|$\overrightarrow b$|=5,θ為$\overrightarrow a$,$\overrightarrow b$的夾角.
(1)求角B大。
(2)求sin(B+θ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{f'(1)}{e}•{e^x}-f(0)•x+\frac{1}{2}{x^2}(e$是自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)f(x)的解析式
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知角θ的頂點為坐標原點,始邊為x軸的非負半軸,若P($-\frac{3}{5}$,$\frac{4}{5}$)是此角與單位圓的交點,cos θ=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知隨機變量X服從二項分布B(4,$\frac{1}{2}$),則D(3X+1)=( 。
A.3B.4C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2x-$\frac{1}{{2}^{|x|}}$,x∈[-1,2].
(1)若f(x)=$\frac{3}{2}$,求x值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.計算下列各式的值
(1)已知sinα是方程5x2-7x-6=0的根,α是第三象限角,則計算$\frac{{sin(-α-\frac{3}{2}π)cos(\frac{3}{2}π-α)}}{{cos(\frac{π}{2}-α)sin(\frac{π}{2}+α)}}$•tan2(π-α);
(2)$\frac{\sqrt{1-2sin40°cos40°}}{cos40°-\sqrt{1-si{n}^{2}50°}}$.

查看答案和解析>>

同步練習(xí)冊答案