7.已知隨機(jī)變量X服從二項(xiàng)分布B(4,$\frac{1}{2}$),則D(3X+1)=( 。
A.3B.4C.9D.10

分析 隨機(jī)變量X服從二項(xiàng)分布B(4,$\frac{1}{2}$),可得D(X)=1.則D(3X+1)=9D(X).

解答 解:∵隨機(jī)變量X服從二項(xiàng)分布B(4,$\frac{1}{2}$),∴D(X)=4×$\frac{1}{2}×(1-\frac{1}{2})$=1.
則D(3X+1)=9D(X)=9.
故選:C.

點(diǎn)評(píng) 本題考查了二項(xiàng)分布列及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=x-alnx-1,g(x)=$\frac{mx}{{e}^{x-1}}$,其中m、a均為實(shí)數(shù),e為自然對(duì)數(shù)的底數(shù).
(1)試討論函數(shù)g(x)的極值情況;
(2)設(shè)m=1,a<0,若對(duì)任意的x1,x2∈[3,4](x1≠x2),|f(x2)-f(x1)|<|$\frac{1}{g({x}_{2})}$-$\frac{1}{g({x}_{1})}$|恒成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.有三個(gè)家庭每個(gè)家庭三個(gè)人共計(jì)9人坐成一排,如果要求每個(gè)家庭都在一起,共有3!3!3!3!種排法(用階乘的形式表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.①已知sin($\frac{7}{2}π$-α)=-$\frac{1}{2}$,求sin2($\frac{9}{2}$π-α)+cos(3π-α)的值;
②化簡(jiǎn):$\frac{{sin(α-\frac{π}{2})cos(\frac{3}{2}π+α)tan(π-α)}}{tan(-π-α)sin(-π-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=3sin($\frac{1}{2}$x-$\frac{π}{4}$),x∈R.
(1)列表并畫(huà)出函數(shù)f(x)在長(zhǎng)度為一個(gè)周期的閉區(qū)間上的簡(jiǎn)圖;
(2)將函數(shù)y=sinx的圖象作怎樣的變換可得到f(x)的圖象:
①先將函數(shù)y=sinx的圖象向右平移 $\frac{π}{4}$個(gè)單位得到函數(shù)y=sin(x-$\frac{π}{4}}$)的圖象;
②再將函數(shù)y=sin(x-$\frac{π}{4}}$)的圖象各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變)得到函數(shù)y=sin(${\frac{1}{2}$x-$\frac{π}{4}}$)的圖象;
③最后再將函數(shù)y=sin(${\frac{1}{2}$x-$\frac{π}{4}}$)的圖象各點(diǎn)縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍(橫坐標(biāo)不變)得到函數(shù)y=3sin(${\frac{1}{2}$x-$\frac{π}{4}}$)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某同學(xué)做3個(gè)數(shù)學(xué)題和2個(gè)物理題,已知做對(duì)每個(gè)數(shù)學(xué)題的概率為$\frac{2}{3}$,做對(duì)每個(gè)物理題的概率為p(0<p<1),5個(gè)題目做完只錯(cuò)了一個(gè)的概率為$\frac{7}{27}$.
(Ⅰ)求p的值;
(Ⅱ)做對(duì)一個(gè)數(shù)學(xué)題得2分,做對(duì)一個(gè)物理題得3分,該同學(xué)做完5個(gè)題目的得分為隨機(jī)變量ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.對(duì)于函數(shù)f(x)=$\left\{\begin{array}{l}{sinx,sinx≥cosx}\\{cosx,sinx<cosx}\end{array}\right.$,給出下列四個(gè)命題:
①該函數(shù)的圖象關(guān)于x=2kπ+$\frac{π}{4}$ (k∈Z)對(duì)稱(chēng);
②當(dāng)且僅當(dāng)x=kπ+$\frac{π}{2}$ (k∈Z)時(shí),該函數(shù)取得最大值1;
③該函數(shù)是以π為最小正周期的周期函數(shù);
④當(dāng)且僅當(dāng)2kπ+π<x<2kπ+$\frac{3π}{2}$ (k∈Z)時(shí),-$\frac{\sqrt{2}}{2}$≤f(x)<0.
其中正確的是①④.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖是某幾何體的三視圖,則該幾何體的體積等于( 。
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.18×17×16×…×9=( 。
A.A${\;}_{18}^{11}$B.C${\;}_{18}^{11}$C.A${\;}_{18}^{10}$D.C${\;}_{18}^{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案