分析 (1)一一列舉所有的基本事件即可,
(2)客戶只選聘B類服務員有(B1,B2),(B1,B3),(B2,B3)共3種,根據(jù)概率公式計算即可,
(3)根據(jù)對立事件的概率減法公式,求出即可.
解答 解:(1)所有的基本事件如下:(A1、A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3).
(2)客戶只選聘B類服務員有(B1,B2),(B1,B3),(B2,B3)共3種,
故客戶只選聘B類服務員的概率為P=$\frac{3}{10}$,
(3)客戶沒有選聘1名B類服務員的為(A1、A2),
故客戶沒有選聘1名B類服務員的概率為$\frac{1}{10}$,
故客戶至少選聘1名B類服務員的概率1-$\frac{1}{10}$=$\frac{9}{10}$
點評 本題考查等可能事件的概率,本題解題的關鍵是列舉出事件數(shù),要做到不重不漏.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z | B. | [kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z | ||
C. | [2kπ-$\frac{π}{3}$,2kπ+$\frac{π}{6}$],k∈Z | D. | [2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{3}$],k∈Z |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | S=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{10}$ | B. | S=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$ | ||
C. | S=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{11}$ | D. | S=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{22}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{23}{3}$cm3 | B. | $\frac{22}{3}$cm3 | C. | $\frac{47}{6}$cm3 | D. | 7cm3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com