13.已知二面角內(nèi)α-l-β內(nèi)一點P到二面角的兩個面α,β的距離分別為PA,PB,且PA=PB=AB=2,則二面角的度數(shù)是120°.

分析 先畫出示意圖,可知∠ACB是二面角的平面角,求出.∠APB=60°,即可得到結(jié)論.

解答 解:作出對應(yīng)的圖象,PA=PB=AB=2,
則△PAB是等邊三角形,則∠APB=60°,
則∠ACB是二面角的平面角,
則∠ACB=180°-∠APB=180°-60°=120°
∴二面角的度數(shù)是120°
故答案為:120°

點評 本題主要考查了二面角的平面角及求法,求二面角,關(guān)鍵是構(gòu)造出二面角的平面角,根據(jù)∠APB與二面角的平面角互補是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知復(fù)數(shù)z=1-i,那么|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.將5個編號為1,2,3,4,5的小球放入5個編號為1,2,3,4,5的盒子中.
(1)有多少種放法?
(2)每盒至多一球,有多少種放法?
(3)恰好有一個空盒,有多少種放法?
(4)每個盒內(nèi)放一個球,并且恰好有一個球的編號與盒子的編號相同,有多少種方法?
(5)每個盒子內(nèi)投放一球,并且至少有兩個球的編號與盒子編號是相同的,有多少種投放方法?
(6)把5個不同的小球換成5個相同的小球,恰有一個空盒,有多少種不同的放法?
(注意:以上各小題要列出算式后再求值,否則扣分.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)已知sinα=$\frac{12}{13}$,α∈($\frac{π}{2}$,π),求sin2α;
(2)已知tanα=$\frac{1}{2}$,求tan2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在三棱柱ABC-A1B1C1中,AC=AC1=B1C=B1C1=2,AC⊥AC1,B1C⊥B1C1,O為CC1的中點.
(1)求證:BB1⊥AB1
(2)若AB=2$\sqrt{3}$,求平面ABC與平面AOB1所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,點F1,F(xiàn)2分別為橢圓C的左、右焦點,以原點為圓心,橢圓C的短半軸為半徑的圓與直線x-y+$\sqrt{2}$=0相切.
(I)求橢圓C的方程;
(Ⅱ)設(shè)過右焦點F2的直線l與橢圓C相交于不同的兩點M,N,且直線l與x軸不重合,若點P在y軸上,|PM|=|PN|,求點P的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.下列平面區(qū)域所對應(yīng)的二元一次不等式(組)分別為:

(1)$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$,;(2)x+y<1;(3)$\left\{\begin{array}{l}{y≤x}\\{y>-x}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知平面區(qū)域D,命題P:?(x,y)∈D,x-2y+1≤0,若命題P為真命題,則平面區(qū)域D可以是(  )
A.$\left\{\begin{array}{l}{x-y≥0}\\{x+2y≥3}\end{array}\right.$B.$\left\{\begin{array}{l}{x-y≥0}\\{x+2y≤3}\end{array}\right.$C.$\left\{\begin{array}{l}{x-y≤0}\\{x+2y≥3}\end{array}\right.$D.$\left\{\begin{array}{l}{x-y≤0}\\{x+2y≤3}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=3,|$\overrightarrow{a}$-2$\overrightarrow$|≤1,則$\overrightarrow{a}•\overrightarrow$的最小值是$-\frac{1}{8}$.

查看答案和解析>>

同步練習(xí)冊答案