分析 先求出直線與拋物線的交點(diǎn)坐標(biāo),根據(jù)直線y=kx分拋物線y=x-x2與x軸所圍成圖形為面積相等的兩個(gè)部分得${∫}_{0}^{2-k}$[(2x-x2)-kx]dx=$\frac{1}{2}$${∫}_{0}^{2}$(2x-x2)dx,下面利用定積分的計(jì)算公式即可求得k值.
解答 解:由$\left\{\begin{array}{l}{y=kx}\\{y=2x-{x}^{2}}\end{array}\right.$得 $\left\{\begin{array}{l}{x=2-k}\\{y=2k-{k}^{2}}\end{array}\right.$(0<k<2).
由題設(shè)得${∫}_{0}^{2-k}$[(2x-x2)-kx]dx=$\frac{1}{2}$${∫}_{0}^{2}$(2x-x2)dx即${∫}_{0}^{2-k}[($2x-x2)-kx]dx=$\frac{1}{2}$( x2-$\frac{1}{3}$x3)|02=$\frac{2}{3}$
∴(x2-$\frac{1}{3}{x}^{3}$$-\frac{k}{2}{x}^{2}$)|02-k=$\frac{2}{3}$,
(2-k)3=2
∴k=2-$\root{3}{2}$
故k的值為:$2-\root{3}{2}$.
點(diǎn)評(píng) 研究平面圖形的面積的一般步驟是:(1)畫草圖;(2)解方程組,求出交點(diǎn)坐標(biāo);(3)確定被積函數(shù)及上、下限;(4)進(jìn)行計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m?α,n∥m⇒n∥α | B. | m?α,n⊥m⇒n⊥α | C. | m⊥α,m∥n,n∥β⇒α⊥β | D. | m?α,n?β,m∥n⇒α∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=xsinx | B. | y=$\frac{{{e^x}-{e^{-x}}}}{2}$ | C. | y=xlgx | D. | y=x3+sinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{15}$ | C. | 2$\sqrt{15}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com