A. | f(cosα)<f(sinβ) | B. | f(sinα)<f(cosβ) | C. | f(cosα)>f(sinβ) | D. | f(sinα)>f(cosβ) |
分析 由題意可知:函數(shù)的周期為2,根據(jù)偶函數(shù)的對(duì)稱(chēng)軸及單調(diào)性即可求得f(x)在[0,1]上為單調(diào)增函數(shù),由α,β是銳角三角形的兩個(gè)內(nèi)角,求得α和β的取值范圍,根據(jù)函數(shù)的單調(diào)性即可求得答案.
解答 解:由f(x+2)=f(x),
∴函數(shù)的周期為2,
∵f(x)在[-3,-2]上為減函數(shù),
∴f(x)在[-1,0]上為減函數(shù),
∵f(x)為偶函數(shù),
∴f(x)在[0,1]上為單調(diào)增函數(shù).
∵在銳角三角形中,π-α-β<$\frac{π}{2}$,
∴α+β<$\frac{π}{2}$,
∴$\frac{π}{2}$-β<α,
∵α,β是銳角,
∴0<$\frac{π}{2}$-β<α<$\frac{π}{2}$,
∴sinα>sin($\frac{π}{2}$-β)=cosβ,
∴f(x)在[0,1]上為單調(diào)增函數(shù).
∴f(sinα)>f(cosβ),
故答案選:D.
點(diǎn)評(píng) 本題主要考查了函數(shù)的奇偶性和周期性的應(yīng)用,以及三角函數(shù)的圖象和性質(zhì),誘導(dǎo)公式的應(yīng)用,綜合性較強(qiáng),涉及的知識(shí)點(diǎn)較多,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | $-\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ${a^{\frac{2n}{2m}}}$=${a^{\frac{n}{m}}}$ | B. | $\root{4}{a^2}$=$\sqrt{|a|}$ | C. | (a${\;}^{\frac{n}{m}}}$)2=a${\;}^{{{(\frac{n}{m})}^2}}}$ | D. | $\root{5}{a^2}$=${a^{\frac{5}{2}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com