2.定義在R上的偶函數(shù)f(x)滿(mǎn)足f(x+2)=f(x),且在[-3,-2]上是減函數(shù),若α,β是銳角三角形的兩個(gè)內(nèi)角,則下列不等式中正確的是( 。
A.f(cosα)<f(sinβ)B.f(sinα)<f(cosβ)C.f(cosα)>f(sinβ)D.f(sinα)>f(cosβ)

分析 由題意可知:函數(shù)的周期為2,根據(jù)偶函數(shù)的對(duì)稱(chēng)軸及單調(diào)性即可求得f(x)在[0,1]上為單調(diào)增函數(shù),由α,β是銳角三角形的兩個(gè)內(nèi)角,求得α和β的取值范圍,根據(jù)函數(shù)的單調(diào)性即可求得答案.

解答 解:由f(x+2)=f(x),
∴函數(shù)的周期為2,
∵f(x)在[-3,-2]上為減函數(shù),
∴f(x)在[-1,0]上為減函數(shù),
∵f(x)為偶函數(shù),
∴f(x)在[0,1]上為單調(diào)增函數(shù).
∵在銳角三角形中,π-α-β<$\frac{π}{2}$,
∴α+β<$\frac{π}{2}$,
∴$\frac{π}{2}$-β<α,
∵α,β是銳角,
∴0<$\frac{π}{2}$-β<α<$\frac{π}{2}$,
∴sinα>sin($\frac{π}{2}$-β)=cosβ,
∴f(x)在[0,1]上為單調(diào)增函數(shù).
∴f(sinα)>f(cosβ),
故答案選:D.

點(diǎn)評(píng) 本題主要考查了函數(shù)的奇偶性和周期性的應(yīng)用,以及三角函數(shù)的圖象和性質(zhì),誘導(dǎo)公式的應(yīng)用,綜合性較強(qiáng),涉及的知識(shí)點(diǎn)較多,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求下列函數(shù)的導(dǎo)數(shù):
(1)$y=\frac{{{x^3}-1}}{sinx}$;         
(2)y=2e1-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在平面直角坐標(biāo)系中,曲線(xiàn)C1的參數(shù)方程為:$\left\{{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}}$(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為$ρsin({θ+\frac{π}{4}})=\frac{{5\sqrt{2}}}{2}$.
(1)求曲線(xiàn)C2的直角坐標(biāo)方程;
(2)已知點(diǎn)M曲線(xiàn)C1上任意一點(diǎn),求點(diǎn)M到曲線(xiàn)C2的距離d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且acosB-bcosA=$\frac{1}{2}$c,當(dāng)tan(A-B)取最大值時(shí),則角C的值為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸為正半軸建立直角坐標(biāo)系,曲線(xiàn)M的方程為ρ2(3+cos2θ)=8.
(1)求曲線(xiàn)的直角坐標(biāo)方程
(2)若點(diǎn)A(0,m),B(n,0)在曲線(xiàn)M上,點(diǎn)F(0,-$\sqrt{{m^2}-{n^2}}}$),F(xiàn)P平行于x軸交曲線(xiàn)M于點(diǎn)P(x0,y0),其中m>0,n>0,x0>0,求證:PO∥BA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知$\overrightarrow a$=(-1,3),$\overrightarrow b$=(x,1),且$\overrightarrow a∥\overrightarrow b$,則x等于( 。
A.-3B.$-\frac{1}{3}$C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.命題p:任意一個(gè)三角形,兩邊之和大于第三邊,
命題q:任意一個(gè)三角形,兩邊之差小于第三邊.
寫(xiě)出命題“p∧q,p∨q,¬p”形式的復(fù)合命題,并指出其真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若a∈R,則下列式子恒成立的是( 。
A.${a^{\frac{2n}{2m}}}$=${a^{\frac{n}{m}}}$B.$\root{4}{a^2}$=$\sqrt{|a|}$C.(a${\;}^{\frac{n}{m}}}$)2=a${\;}^{{{(\frac{n}{m})}^2}}}$D.$\root{5}{a^2}$=${a^{\frac{5}{2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知實(shí)數(shù)a,b,c滿(mǎn)足a+b+c=0,a2+b2+c2=1,則a的取值范圍是-$\frac{\sqrt{6}}{3}$≤a≤$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案