分析 (1)利用兩角和的正弦函數(shù)展開表達(dá)式,利用極坐標(biāo)與直角坐標(biāo)方程的互化求解即可.
(2)設(shè)M(4cosθ,3sinθ),表示出M到曲線C2:x+y=5的距離,然后求解表達(dá)式的最值.
解答 解:(1)由$ρsin({θ+\frac{π}{4}})=\frac{{5\sqrt{2}}}{2}$得ρcosθ+ρsinθ=5,
將ρcosθ=x,ρsinθ=y代入得到x+y=5…(5分)
(2)設(shè)M(4cosθ,3sinθ),M到曲線C2:x+y=5的距離,$d=\frac{{|{4cosθ+3sinθ-5}|}}{{\sqrt{2}}}=\frac{{|{5sin({θ+φ})-5}|}}{{\sqrt{2}}}=\frac{{5\sqrt{2}|{sin({θ+φ})-1}|}}{2}$,
當(dāng)sin(θ+φ)=1時(shí),${d_{max}}=5\sqrt{2}$,當(dāng)sin(θ+φ)=1時(shí),dmin=0.所以$d∈[{0,5\sqrt{2}}]$…(10分)
點(diǎn)評(píng) 本題考查參數(shù)方程以及極坐標(biāo)方程的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,2,3} | B. | {1,2,4} | C. | {1,4,3} | D. | {2,4,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 50 | B. | 25 | C. | 100 | D. | $2\sqrt{20}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(cosα)<f(sinβ) | B. | f(sinα)<f(cosβ) | C. | f(cosα)>f(sinβ) | D. | f(sinα)>f(cosβ) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com