5.某中學(xué)號召學(xué)生在今年暑假期間至少參加一次社會(huì)公益活動(dòng)(以下簡稱活動(dòng)).該校合唱團(tuán)共有100名學(xué)生,他們參加活動(dòng)的次數(shù)統(tǒng)計(jì)如圖所示.
(Ⅰ)求合唱團(tuán)學(xué)生參加活動(dòng)的人均次數(shù);
(Ⅱ)從合唱團(tuán)中任意選兩名學(xué)生,求他們參加活動(dòng)次數(shù)恰好相等的概率.

分析 (Ⅰ)由圖可知,參加活動(dòng)1次、2次和3次的學(xué)生人數(shù)分別為10、50和40,由此能求出該合唱團(tuán)學(xué)生參加活動(dòng)的人均次數(shù).
(Ⅱ)從合唱團(tuán)中任選兩名學(xué)生,都參加了1次活動(dòng)有$C_{10}^2$種選法,都參加了2次活動(dòng)有$C_{50}^2$種選法,都參加了3次活動(dòng)有$C_{40}^2$種選法,總$C_{100}^2$種選法,由此能求出他們參加活動(dòng)次數(shù)恰好相等的概率.

解答 解:(Ⅰ)由圖可知,參加活動(dòng)1次、2次和3次的學(xué)生人數(shù)分別為10、50和40,….(2分)
該合唱團(tuán)學(xué)生參加活動(dòng)的人均次數(shù)為
$\frac{1×10+2×50+3×40}{100}$=2.3.…(6分)
(Ⅱ)從合唱團(tuán)中任選兩名學(xué)生,都參加了1次活動(dòng)有$C_{10}^2$種選法,…(7分)
都參加了2次活動(dòng)有$C_{50}^2$種選法,…(8分)
都參加了3次活動(dòng)有$C_{40}^2$種選法,…(9分)
總$C_{100}^2$種選法,…(10分)
他們參加活動(dòng)次數(shù)恰好相等的概率為p0=$\frac{{C}_{10}^{2}+{C}_{50}^{2}+{C}_{40}^{2}}{{C}_{100}^{2}}$=$\frac{41}{99}$…(12分)

點(diǎn)評 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意排列組合知識的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.試證直徑上的圓周角為直角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.橫梁的強(qiáng)度和它的矩形橫斷面的寬成正比,并和矩形橫斷面的高的平方成正比,要將直徑為d的圓木鋸成強(qiáng)度最大的橫梁,則橫斷面的高和寬分別為( 。
A.$\sqrt{3}$d,$\frac{{\sqrt{3}}}{3}$dB.$\frac{{\sqrt{3}}}{3}$d,$\frac{{\sqrt{6}}}{3}$dC.$\frac{{\sqrt{6}}}{3}$d,$\frac{{\sqrt{3}}}{3}$dD.$\frac{{\sqrt{6}}}{3}$d,$\sqrt{3}$d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.有下列四個(gè)命題:
①互為相反向量的兩個(gè)向量模相等;
②若向量$\overrightarrow{AB}$與$\overrightarrow{CD}$是共線的向量,則點(diǎn)A,B,C,D必在同一條直線上;
③若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$或$\overrightarrow{a}$=-$\overrightarrow$; 
④若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow$=$\overrightarrow{0}$;
其中正確結(jié)論的個(gè)數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了解班級學(xué)生對任課教師課堂教學(xué)的滿意程度情況.現(xiàn)從某班全體學(xué)生中,隨機(jī)抽取12名,測試的滿意度分?jǐn)?shù)(百分制)如莖葉圖所示:
根據(jù)學(xué)校體制標(biāo)準(zhǔn),成績不低于76的為優(yōu)良.
(Ⅰ)從這12名學(xué)生中任選3人進(jìn)行測試,求至少有1人成績是“優(yōu)良”的概率;
(Ⅱ)從抽取的12人中隨機(jī)選取3人,記ξ表示測試成績“優(yōu)良”的學(xué)生人數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.2016年夏季奧運(yùn)會(huì)將在巴西里約熱內(nèi)盧舉行,體育頻道為了解某地區(qū)關(guān)于奧運(yùn)會(huì)直播的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中40歲以上的觀眾有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾準(zhǔn)備平均每天收看奧運(yùn)會(huì)直播時(shí)間的頻率分布表(時(shí)間:分鐘):
分組[0,20)[20,40)[40,60)[60,80)[80,100)[100,120)
頻率0.10.180.220.250.20.05
將每天準(zhǔn)備收看奧運(yùn)會(huì)直播的時(shí)間不低于80分鐘的觀眾稱為“奧運(yùn)迷”,已知“奧運(yùn)迷”中有10名40歲以上的觀眾.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否有95%以上的把握認(rèn)為“奧運(yùn)迷”與年齡有關(guān)?
非“奧運(yùn)迷”“奧運(yùn)迷”合計(jì)
40歲以下
40歲以上
合計(jì)
(2)將每天準(zhǔn)備收看奧運(yùn)會(huì)直播不低于100分鐘的觀眾稱為“超級奧運(yùn)迷”,已知“超級奧運(yùn)迷”中有2名40歲以上的觀眾,若從“超級奧運(yùn)迷”中任意選取2人,求至少有1名40歲以上的觀眾的概率.
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$
P(K2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)全集U={1,2,3,4,5},M={2,3,4},N={4,5},則∁UM)∪N=(  )
A.{1}B.[1,5}C.{4,5}D.{1,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若函數(shù)g(x)為R上的奇函數(shù),那么g(a)+g(-a)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=$\sqrt{{x}^{2}-2x-3}$+ln(x+1)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,-1)∪(3,+∞)B.(-∞,-1]∪[3,+∞)C.(-2,-1]D.[3,+∞)

查看答案和解析>>

同步練習(xí)冊答案