分析 觀察不等式的特點(diǎn),然后寫出結(jié)果即可.
解答 解:1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{{2^n}-1}}$<n(n∈N*,且n≥2),
左側(cè)的表達(dá)式的分母可知第k項(xiàng)是由1,2,3,到2k-1,結(jié)束;
第一步要證的不等式是:$1+\frac{1}{2}+\frac{1}{3}<2$.
故答案為:$1+\frac{1}{2}+\frac{1}{3}<2$.
點(diǎn)評(píng) 本題考查數(shù)學(xué)歸納法的應(yīng)用,注意觀察表達(dá)式的特征是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | Sk+$\frac{1}{2k+1}$ | B. | Sk+$\frac{1}{2k}$+$\frac{1}{2k+1}$ | ||
C. | Sk+$\frac{1}{2k}$+$\frac{1}{2k+1}$-$\frac{1}{k+2}$ | D. | Sk-$\frac{1}{2k}$-$\frac{1}{2k+1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{4}$+y2=1 | B. | $\frac{x^2}{3}$+y2=1 | C. | $\frac{x^2}{2}$+y2=1 | D. | $\frac{x^2}{4}$+$\frac{y^2}{3}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6±2$\sqrt{35}$ | B. | 2±$\sqrt{35}$ | C. | 8±$\sqrt{35}$ | D. | 1±$\sqrt{35}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com