5.在平面直角坐標系xOy中,已知經(jīng)過原點O的直線l與圓C:x2+y2-4x-1=0交于A,B兩點.
(Ⅰ)若直線m:ax-2y+a+2=0(a>0)與圓C相切,切點為B,求直線l的方程;
(Ⅱ)若圓C與x軸的正半軸的交點為D,求△ABD面積的最大值.

分析 (Ⅰ)由點到直線的距離公式求出a值,得到直線m的方程,再聯(lián)立直線方程與圓的方程,求得B的坐標,進一步求得直線l的方程;
(Ⅱ)設A,B兩點的縱坐標分別為y1,y2,由圓的方程求出D的坐標,設出AB所在直線方程,聯(lián)立直線方程與圓的方程,化為關于y的一元二次方程,利用根與系數(shù)的關系求出A,B兩點縱坐標差的絕對值,代入三角形面積公式,換元后利用基本不等式求得最值.

解答 解:(Ⅰ)由圓C:x2+y2-4x-1=0,得(x-2)2+y2=5,
∴圓心坐標為(2,0),半徑為$\sqrt{5}$.
直線m與圓C相切,得$\frac{|3a+2|}{\sqrt{{a}^{2}+4}}=\sqrt{5}$,
化簡得:a2+3a-4=0,解得a=1或a=-4,
由于a>0,故a=1,
∴直線m:x-2y+3=0.
聯(lián)立$\left\{\begin{array}{l}{x-2y+3=0}\\{{x}^{2}+{y}^{2}-4x-1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$.
故直線m與圓相切于點B(1,2),得l:y=2x;
(Ⅱ)設A,B兩點的縱坐標分別為y1,y2,
求得圓C與x軸正半軸交點D($2+\sqrt{5}$,0),
則${S}_{△ABD}=\frac{1}{2}(2+\sqrt{5})(|{y}_{1}|+|{y}_{2}|)$=$\frac{1}{2}(2+\sqrt{5})|{y}_{1}-{y}_{2}|$,
設AB方程為x=ty,
由$\left\{\begin{array}{l}{x=ty}\\{{x}^{2}+{y}^{2}-4x-1=0}\end{array}\right.$,消元得(t2+1)y2-4ty-1=0,
$|{y}_{1}-{y}_{2}|=\frac{\sqrt{△}}{1+{t}^{2}}$=$\frac{\sqrt{20{t}^{2}+4}}{1+{t}^{2}}=2\sqrt{\frac{5{t}^{2}+1}{({t}^{2}+1)^{2}}}$.
設m=5t2+1,
則$|{{y_1}-{y_2}}|=2\sqrt{\frac{25m}{{{m^2}+8m+16}}}=2\sqrt{\frac{25}{{m+8+\frac{16}{m}}}}$$≤\frac{5}{2}$,當且僅當m=4時取等號.
故△ABD面積最大值為$\frac{5}{4}(2+\sqrt{5})$.

點評 本題考查圓的切線方程,考查了點到直線距離公式的應用,考查直線與圓位置關系的應用,體現(xiàn)了數(shù)學轉(zhuǎn)化思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知拋物線E:y2=2px(p>0),焦點為F,若點A(2,m)(m>0)在拋物線E上,且|AF|=3.
(Ⅰ)求拋物線E的方程和A點的坐標;
(Ⅱ)若過點(2,0)且平行于AF的直線l與拋物線E相交于M,N兩點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.用數(shù)學歸納法證明1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{{2^n}-1}}$<n(n∈N*,且n≥2),第一步要證的不等式是$1+\frac{1}{2}+\frac{1}{3}<2$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.(請用分析法證明)若a>0,求證:$\sqrt{a+\frac{1}{a}}$-$\sqrt{2}$≥$\sqrt{a}$+$\frac{1}{{\sqrt{a}}}$-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知⊙O:x2+y2=1,若直線y=$\sqrt{k}$x+2上總存在點P,使得過點P的⊙O的兩條切線互相垂直,則實數(shù)k的取值范圍為( 。
A.k≥1B.k>1C.k≥2D.k>2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.一個盒子中裝有形狀、大小、質(zhì)地均相同的5張卡片,上面分別標有數(shù)字1,2,3,4,5.甲、乙兩人分別從盒子中不放回地隨機抽取1張卡片.
(Ⅰ)求甲、乙兩人所抽取卡片上的數(shù)字之和為偶數(shù)的概率;
(Ⅱ)以盒子中剩下的三張卡片上的數(shù)字作為線段長度,求以這三條線段為邊可以構(gòu)成三角形的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某市區(qū)甲、乙、丙三所學校的高三文科學生共有800名,其中男、女生人數(shù)如下表:
甲校乙校丙校
男生9790x
女生153yz
從這三所學校的所有高三文科學生中隨機抽取1人,抽到乙校高三文科女生的概率為0.2
(1)求表中x+z的值;
(2)某市四月份?己,市教研室準備從這三所學校的所有高三文科學生中利用隨機數(shù)表法抽取100人進行成績統(tǒng)計分析,先將800人按001,002,…,800進行編號,如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢測的4個人的編號;(下面摘取了隨機數(shù)表第7行至第9行)
8442 1753 3157 2455 0688 7704 7447 6721 7633 5026 8392
6301 5316 5916 9275 3816 5821 7071 7512 8673 5807 4439
1326 3321 1342 7864 1607 8252 0744 3815 0324 4299 7931
(3)已知x≥145,z≥145,求丙校高三文科生中的男生比女生人數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.2016年2月,國務院發(fā)布的《關于進一步加強城市規(guī)劃建設管理工作的若干意見》中提到“原則上不再建設封閉住宅小區(qū),已建成的住宅小區(qū)和單位大院要逐步打開”,濟南某新聞媒體對某一小區(qū)100名不同年齡段的居民進行調(diào)查,如圖是各年齡段支持以上做法的人數(shù)的頻率分布直方圖.
(Ⅰ)求m的值;
(Ⅱ)用分層抽樣的方法抽取20人到演播大廳進行現(xiàn)場交流.
(i)求年齡在35~55歲之間的人數(shù);
(ii)在55~75歲之間任意找兩個人發(fā)言(不考慮先后順序),至少一人再65~75歲之間的概率是多少?

查看答案和解析>>

同步練習冊答案