3.已知f(x)是定義在區(qū)間[-1,1]上的函數(shù),且f(1)=1,若m,n∈[-1,1],m-n≠0時,有$\frac{f(m)-f(n)}{m-n}$<0.
(1)判斷函數(shù)的單調(diào)性,需要說明理由:
(2)解不等式:f(x+$\frac{1}{2}$)<f(1-x);
(3)若不等式f(x)≥t2-2at+1對?x∈[-1,1]與?t∈[1,2]恒成立,求實數(shù)a的取值范圍.

分析 (1)利用減函數(shù)的定義,即可得出結(jié)論;
(2)利用函數(shù)的單調(diào)性,轉(zhuǎn)化為具體不等式,即可得出結(jié)論;
(3)要使f(x)≥t2-2at+1對?x∈[-1,1]恒成立,只要f(x)min≥t2-2at+1,再利用?t∈[1,2]恒成立,求實數(shù)a的取值范圍.

解答 解:(Ⅰ)任取-1≤x1<x2≤1,
則∵m,n∈[-1,1],m-n≠0時,有$\frac{f(m)-f(n)}{m-n}$<0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴f(x)在[-1,1]上是減函數(shù);
(Ⅱ)∵f(x)是定義在[-1,1]上是減函數(shù),
∴$\left\{\begin{array}{l}{-1≤x+\frac{1}{2}≤1}\\{-1≤1-x≤1}\\{x+\frac{1}{2}>1-x}\end{array}\right.$,∴$\frac{1}{4}<x≤\frac{1}{2}$,
∴不等式的解集為($\frac{1}{4}$,$\frac{1}{2}$];
(3)由(1)知f(x)在[-1,1]上是減函數(shù),
∴f(x)在[-1,1]上的最小值為f(1)=1,
要使f(x)≥t2-2at+1對?x∈[-1,1]恒成立,只要t2-2at+1≤1⇒t2-2at≤0,
∵?t∈[1,2]恒成立,
∴2a≥t在t∈[1,2]恒成立,
∴2a≥2,
∴a≥1.

點評 本題考查抽象函數(shù)的單調(diào)性、奇偶性,考查抽象不等式的求解,可從恒成立問題,考查轉(zhuǎn)化思想,考查學(xué)生靈活運(yùn)用知識解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在長方體ABCD-A1B1C1D1中,已知AD=AA1=1,AB=2,點E是AB的中點.
(1)求三棱錐C-DD1E的體積;
(2)求證:D1E⊥A1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.關(guān)于函數(shù)f(x)=|sinx|+|cosx|(x∈R),有如下結(jié)論:
①函數(shù)f(x)的周期是$\frac{π}{2}$;
②函數(shù)f(x)的值域是[0,$\sqrt{2}$];
③函數(shù)f(x)的圖象關(guān)于直線x=$\frac{3π}{4}$對稱;
④函數(shù)f(x)在($\frac{π}{2}$,$\frac{3π}{4}$)上遞增.
其中正確命題的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在平面幾何中,三角形的面積等于其周長的一半與其內(nèi)切圓半徑之積,類比之,在立體幾何中,三棱錐的體積等于其表面積的$\frac{1}{3}$與其內(nèi)切球半徑之積(用文字表述)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.等差數(shù)列{an}中的兩項a2、a2016恰好是關(guān)于x的函數(shù)f(x)=2x2+8x+a(a∈R)的兩個零點,且a1009+a1010>0,則使{an}的前n項和Sn取得最小值的n為( 。
A.1009B.1010C.1009,1010D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如果數(shù)據(jù)x1,x2,…,xn的平均數(shù)為2,方差為3,則數(shù)據(jù)3x1+5,3x2+5…,3xn+5的平均數(shù)和方差分別為( 。
A.11,25B.11,27C.8,27D.11,8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,扇形OAB的中心角為直角,半徑為1,點P為扇形OAB的弧$\widehat{AB}$上任意一點,設(shè)$\overrightarrow{OP}$=x$\overrightarrow{OB}$+y$\overrightarrow{OA}$(x,y∈R),$\overrightarrow a$=(x,y),$\overrightarrow b$=(${\sqrt{3}$,1),則$\overrightarrow a•\overrightarrow b$的最小值為(  )
A.-1B.-2C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知四棱柱ABCD-A1B1C1D1,側(cè)面A1ADD1⊥面ABCD,底面ABCD是矩形,且AB=2,AD=1,AA1=$\sqrt{5}$,∠A1AD的余弦值為$\frac{\sqrt{5}}{5}$.
(1)求證:平面A1DCB1⊥平面ABCD;
(2)求BD1與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知點M(-1,6),N(3,2),則線段MN的垂直平分線方程為( 。
A.x-y-4=0B.x-y+3=0C.x+y-5=0D.x+4y-17=0

查看答案和解析>>

同步練習(xí)冊答案