2.若對(duì)任意a>0,b∈R,存在x∈[1,2],使得|${\frac{2}{x}$-ax+b|≥M成立,則實(shí)數(shù)M的最大值是$\frac{1}{2}$.

分析 構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值,再分類(lèi)討論即可求出答案.

解答 解:f(x)=$\frac{2}{x}$-ax+b,
∴f′(x)=-$\frac{2}{{x}^{2}}$-a,
∵a>0,
∴f′(x)=-

2
x2
-a<0恒成立,
∴f(x)在[1,2]為減函數(shù),
∴f(x)max=f(1)=2-a+b=1-a+b+1=2-a+b
f(x)min=f(2)=1-2a+b=1-a+b-a=1-2a+b
若|2-a+b|>|1-2a+b|,即|2-a+b|2>|1-2a+b|2,即(3-3a+2b)(1+a)>0,
∴3-3a+2b>0,M的最大值為:|2-a+b|,
若|2-a+b|=|1-2a+b|,即3-3a+2b=0,M的最大值為:|2-a+b|,
若|2-a+b|<|1-2a+b|,即|2-a+b|2>|1-2a+b|2,即(3-3a+2b)(1+a)<0,
∴3-3a+2b<0,M的最大值為:|1-2a+b|,
在x∈[1,2]上,函數(shù)相對(duì)于x軸的寬度為1+a,∴M的最大值為$\frac{1}{2}$
故答案為:$\frac{1}{2}$

點(diǎn)評(píng) 本題考查了函數(shù)存在性的問(wèn)題,關(guān)鍵是構(gòu)造函數(shù)判斷函數(shù)的最值,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.“0≤a≤4”是“命題‘?x∈R,不等式x2+ax+a>0成立’為真命題”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖是函數(shù)y=Asin(ωx+ϕ)+b,(A>0,ω>0,|ϕ|<$\frac{π}{2}$)的一段圖象.求此函數(shù)解析式,并求出對(duì)稱(chēng)軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知隨機(jī)變量ξ~N(1,22),且P(-1≤ξ≤3)=0.7,則?P(ξ≤-1)=0.15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}滿(mǎn)足:a1=1,an+1=an+$\frac{{{a_n}^2}}{{{{(n+1)}^2}}}$.(n∈N*
(Ⅰ)證明:$\frac{{{a_{n+1}}}}{a_n}$≥1+$\frac{1}{{{{(n+1)}^2}}}$;
(Ⅱ)求證:$\frac{2(n+1)}{n+3}$<an+1<n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.甲,乙兩人一起到同一糧店買(mǎi)米,共買(mǎi)了2次,兩次的價(jià)格分別為a,b(a≠b),甲每次買(mǎi)m千克的大米,乙每次買(mǎi)m元錢(qián)的大米,甲,乙兩人兩次買(mǎi)米的平均價(jià)格分別為x,y(平均價(jià)格等于購(gòu)米總金額與購(gòu)米總數(shù)之比),則x,y的大小關(guān)系是( 。
A.x>yB.x<yC.x=yD.與m的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知命題p:函數(shù)y=ln$\sqrt{x-4}$為增函數(shù),命題q:函數(shù)y=$\frac{1}{tanx+1}$+tanx+2的最小值為3,則下列命題是真命題的是( 。
A.(¬p)∧qB.p∧qC.¬(p∨q)D.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.2016年5月20日,針對(duì)部分“二線(xiàn)城市”房?jī)r(jià)上漲過(guò)快,媒體認(rèn)為國(guó)務(wù)院常務(wù)會(huì)議可能再次確定五條措施(簡(jiǎn)稱(chēng)“國(guó)五條”).為此,記者對(duì)某城市的工薪階層關(guān)于“國(guó)五條”態(tài)度進(jìn)行了調(diào)查,隨機(jī)抽取了60人,作出了他們的月收入的頻率分布直方圖(如圖),同時(shí)得到了他們的月收入情況與“國(guó)五條”贊成人數(shù)統(tǒng)計(jì)表(如表):
月收入(百元)贊成人數(shù)
[15,25)8
[25,35)7
[35,45)10
[45,55)6
[55,65)2
[65,75)2
(Ⅰ)試根據(jù)頻率分布直方圖估計(jì)這60人的中位數(shù)和平均月收入;
(Ⅱ)若從月收入(單位:百元)在[65,75)的被調(diào)查者中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求被選取的2人都不贊成的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知$\sqrt{11-6\sqrt{2}}$的整數(shù)部分為a,小數(shù)部分為b.求a+b+$\frac{2}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案