1.在三棱柱ABC-A1B1C1中,已知側(cè)棱AA1⊥底面ABC,且AB=AC=5,BC=6,AA1=9,D為BC的中點(diǎn),F(xiàn)為C1C上的動(dòng)點(diǎn).
(1)若CF=6,求證:B1F⊥平面ADF;
(2)若FD⊥B1D,求三棱錐B1-ADF的體積.

分析 (1)證明直線與平面垂直,關(guān)鍵要找到兩條相交直線與之都垂直,通過(guò)證明AD⊥平面BCC1B1得AD⊥B1F,然后在矩形BCC1B1中通過(guò)證明Rt△DCF≌Rt△FC1B1得B1F⊥FD,問(wèn)題從而得證.
(2)利用等體積法,將要求的三棱錐B1-ADF的體積轉(zhuǎn)化為高和底面都已知的三棱錐A-B1DF的體積來(lái)求.

解答 (1)證明:∵AB=AC,D為BC中點(diǎn),∴AD⊥BC,
又直三棱柱中:BB1⊥底面ABC,AD?底面ABC,
∴AD⊥BB1
∴AD⊥平面BCC1B1,
∵B1F?平面BCC1B1
∴AD⊥B1F.
在矩形BCC1B1中:C1F=CD=3,CF=C1B1=6
∴Rt△DCF≌Rt△FC1B1
∴∠CFD=∠C1B1F
∴∠B1FD=90°,即B1F⊥FD,
∵AD∩FD=D,
∴B1F⊥平面AFD;
(2)解:∵FD⊥B1D,BC=6,AA1=9,D為BC的中點(diǎn),
∴CF=1,C1F=8,
∴${S}_{△{B}_{1}DF}$=6×9-$\frac{1}{2}×1×3$-$\frac{1}{2}×3×9$-$\frac{1}{2}×6×8$=15,
∵D為BC的中點(diǎn),AB=AC=5,BC=6,
∴AD=4,
∵AD⊥平面BCC1B1,
∴三棱錐B1-ADF的體積=三棱錐A-B1DF的體積=$\frac{1}{3}×15×4$=20.

點(diǎn)評(píng) 本小題主要考查空間線面關(guān)系、幾何體的體積等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力,是個(gè)中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,橢圓的短軸端點(diǎn)和焦點(diǎn)所組成的四邊形為正方形,兩準(zhǔn)線間的距離為4.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)E(-1,0)且不與坐標(biāo)軸垂直的直線l交此橢圓于C,D兩點(diǎn),若線段CD的垂直平分線與x軸交于點(diǎn)M(x0,0),求實(shí)數(shù)x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,AB是圓O的直徑,弦CD⊥AB于點(diǎn)M,點(diǎn)E是CD延長(zhǎng)線上一點(diǎn),AB=10,CD=8,3ED=4OM,EF切圓O于F,BF交CD于點(diǎn)G.
(1)求證:EF=EG;
(2)求線段MG的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)0<a<1,函數(shù)f(x)=loga|x|的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.高二某班有5名同學(xué)站一排照相,其中甲乙兩位同學(xué)必須相鄰的不同站法有( 。┓N.
A.120B.72C.48D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如果10N的力能使彈簧壓縮10cm,為在彈性限度內(nèi)將彈簧從平衡位置拉到離平衡位置6cm處,則克服彈力所做的功為0.18J.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)g(x)=(2-a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x)
(Ⅰ)當(dāng)a=0時(shí),求f(x)的極值;
(Ⅱ)當(dāng)-3<a<-2時(shí),若對(duì)任意λ1,λ2∈[1,3],使得|f(λ1)-f(λ2)|<(m+ln3)a-2ln3恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,AB為⊙O的直徑,過(guò)點(diǎn)B作⊙O的切線BC,OC交⊙O于點(diǎn)E,AE的延長(zhǎng)線交BC于點(diǎn)D.
(Ⅰ)求證:CE2=CD•CB.
(Ⅱ)若AB=2,BC=$\frac{12}{5}$,求CE與CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若正數(shù)a,b滿足ab=a+b+8,則ab的最值范圍為( 。
A.[2,+∞)B.(-∞,2]C.(-∞,16]D.[16,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案