15.已知a1=5,an=2an-1+3(n≥2),則a6=253.

分析 由已知數(shù)列遞推式可得數(shù)列{an+3}是以8為首項(xiàng),以2為公比的等比數(shù)列,求出等比數(shù)列的通項(xiàng)公式后可得an,則a6可求.

解答 解:由an=2an-1+3(n≥2),得an+3=2(an-1+3)(n≥2),
又a1+3=5+3=8≠0,
∴數(shù)列{an+3}是以8為首項(xiàng),以2為公比的等比數(shù)列,
則an+3=8×2n-1=2n+2,
∴${a}_{n}={2}^{n+2}-3$.
∴${a}_{6}={2}^{8}-3=253$.
故答案為:253.

點(diǎn)評 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,考查等比數(shù)列通項(xiàng)公式的求法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.$\overrightarrow{AB}$+$\overrightarrow{CF}$+$\overrightarrow{BC}$+$\overrightarrow{FA}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)y=$\frac{x+2}{3x-4}$.
(1)求x的取值范圍;
(2)求y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=log2x圖象上兩點(diǎn)P,Q,且點(diǎn)Q位于點(diǎn)P的左邊,若點(diǎn)Q無限逼近點(diǎn)P,則直線PQ的斜率( 。
A.一定為正B.一定為負(fù)C.先為正后為負(fù)D.先為負(fù)后為正

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)x,y∈R,向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(3,2-x),若$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù)x的取值為( 。
A.1B.3C.1或-3D.3或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.中國農(nóng)大涿州東城防基地對冬季晝夜溫差大小于某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100棵種子中的發(fā)芽數(shù),得到如表資料:
日期12月1日12月2日12月3日12月4日12月5日
溫差x(℃)101113128
發(fā)芽y(顆)2325302616
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,剩下的2組數(shù)據(jù)用于回歸方程檢驗(yàn).
回歸直線方程參考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,
(1)請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(Ⅰ)中所得的線性回歸方程是否可靠?
(3)請預(yù)測溫差為14℃的發(fā)芽數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)隨機(jī)變量X~B (2,p).若P(X≥1)=$\frac{3}{4}$,則p=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=$\sqrt{25-{x}^{2}}$+lgcosx的定義域?yàn)椋?$\frac{π}{2}$,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將函數(shù)y=sin(2x-$\frac{π}{6}$)-1的圖象向左平移$\frac{π}{4}$個單位,再向上平移1個單位,所得圖象的函數(shù)解析式為y=sin(2x+$\frac{π}{3}$).

查看答案和解析>>

同步練習(xí)冊答案