【題目】在邊長為4的菱形中,,點分別是邊的中點,,沿將翻折到,連接,得到如圖所示的五棱錐,且.
(1)求證:平面平面;
(2)求平面與平面所成二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)根據(jù)菱形性質(zhì)得,再根據(jù)翻折關(guān)系得,結(jié)合線面垂直判定定理得平面,最后根據(jù)面面垂直判定定理得結(jié)論,(2)分別延長和相交于點,過點做,根據(jù)計算得,即得平面,利用三垂線定理及其逆定理證得為平面與平面所成二面角的平面角.最后解直角三角形得二面角的余弦值.
試題解析:(1)因為點分別是邊的中點,所有,
因為菱形的對角線互相垂直,所以,故.
翻折后即有
因為平面,平面,,所以平面,
又因為平面,所以平面平面.
(2)分別延長和相交于點,連,設(shè),連接,∵
∴為等邊三角形.∴,,,,在中,,在中,,∴,
∵,∴平面,
又,∴平面,
過點做,連,則為平面與平面所成二面角的平面角.
在中,,,,∴,
∴,
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二進制規(guī)定:每個二進制數(shù)由若干個0、1組成,且最高位數(shù)字必須為1.若在二進制中,是所有位二進制數(shù)構(gòu)成的集合,對于,,表示和對應(yīng)位置上數(shù)字不同的位置個數(shù).例如當(dāng),時,當(dāng),時.
(1)令,求所有滿足,且的的個數(shù);
(2)給定,對于集合中的所有,求的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設(shè)點,直線和曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018甘肅蘭州市高三一診】已知圓: ,過且與圓相切的動圓圓心為.
(I)求點的軌跡的方程;
(II)設(shè)過點的直線交曲線于, 兩點,過點的直線交曲線于, 兩點,且,垂足為(, , , 為不同的四個點).
①設(shè),證明: ;
②求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱的所有棱長均,為棱(不包括端點)上一動點,是的中點.
(Ⅰ)若,求的長;
(Ⅱ)當(dāng)在棱(不包括端點)上運動時,求平面與平面的夾角的余弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面,為直角梯形,與相交于點,,,,三棱錐的體積為9.
(1)求的值;
(2)過點的平面平行于平面,與棱,,,分別相交于點,求截面的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標系與參數(shù)方程】
在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標方程為.
(1)寫出直線的普通方程和曲線的直角坐標方程;
(2)若點的坐標為,直線與曲線交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某老師對全班名學(xué)生學(xué)習(xí)積極性和參加社團活動情況進行調(diào)查,統(tǒng)計數(shù)據(jù)如下所示:
參加社團活動 | 不參加社團活動 | 合計 | |
學(xué)習(xí)積極性高 | |||
學(xué)習(xí)積極性一般 | |||
合計 |
(1)請把表格數(shù)據(jù)補充完整;
(2)若從不參加社團活動的人按照分層抽樣的方法選取人,再從所選出的人中隨機選取兩人作為代表發(fā)言,求至少有一個學(xué)習(xí)積極性高的概率;
(3)運用獨立性檢驗的思想方法分析:請你判斷是否有的把握認為學(xué)生的學(xué)習(xí)積極性與參與社團活動由關(guān)系?
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com