1.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點是F,左、右頂點分別是A1,A2,過F做直線A1A2的垂線與雙曲線交于B,C兩點,若A1B⊥A2C,則該雙曲線的離心率為(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3}{2}$D.$\sqrt{2}$

分析 由題意可得F(c,0),A1(-a,0),A2(a,0),令x=c,代入雙曲線的方程,求得B,C的坐標,再由兩直線垂直的條件:斜率之積為-1,結(jié)合a,b,c的關(guān)系和離心率公式計算即可得到所求值.

解答 解:由題意可設(shè)F(c,0),A1(-a,0),A2(a,0),
令x=c,代入雙曲線的方程可得y=±b$\sqrt{\frac{{c}^{2}}{{a}^{2}}-1}$=±$\frac{^{2}}{a}$,
可設(shè)B(c,$\frac{^{2}}{a}$),C(c,-$\frac{^{2}}{a}$),
由A1B⊥A2C,可得k${\;}_{{A}_{1}B}$•k${\;}_{{A}_{2}C}$=-1,
即有$\frac{\frac{^{2}}{a}}{c+a}$•$\frac{\frac{^{2}}{a}}{a-c}$=-1,
即為b4=a2(c2-a2)=a2b2,
則a=b,c=$\sqrt{2}$a,
可得e=$\frac{c}{a}$=$\sqrt{2}$.
故選:D.

點評 本題考查雙曲線的離心率的求法,注意運用雙曲線的方程和兩直線垂直的條件:斜率之積為-1,考查運算求解能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

11.已知冪函數(shù)y=f(x)的圖象經(jīng)過點(3,$\sqrt{3}$),那么f(4)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設(shè)數(shù)列{an}的前n項和為Sn,若a1=3且Sn=$\frac{1}{2}$an+1+1,則{an}的通項公式為an=$\left\{\begin{array}{l}{3,n=1}\\{4•{3}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.某中職學校數(shù)學抽測考試成績見下表,李鈞和方莉分別是機電專業(yè)和旅游專業(yè)的學生,則下列結(jié)論正確的為(  )
 專業(yè) 人數(shù)平均分 
 旅游專業(yè) 153人 78
 機電專業(yè)72人 81 
A.在本次數(shù)學抽測考試李鈞的成績比方莉好
B.在本次數(shù)學抽測考試方莉的成績一定沒有李鈞好
C.兩專業(yè)全體學生本次數(shù)學考試的平均成績?yōu)?\overline{x}$=$\frac{78+81}{2}$=79.5分
D.兩專業(yè)全體學生本次數(shù)學考試的平均成績?yōu)?\overline{x}$=$\frac{78×153+81×72}{153+72}$=78.96分

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1-2x}{x+1}$(x≥1),數(shù)列an=f(n)(n∈N*),證明:數(shù)列{an}是遞減數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{cos2x-sin2x}{cos2x+sin2x}$,求函數(shù)的最小正周期T.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若集合A={x|x<4且x∈N},B={x|x2-2x>0},則A∩B=( 。
A.{2}B.{3}C.{2,3}D.{3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若實數(shù)m=${∫}_{1}^{e}$$\frac{1}{x}$dx,過點(-1,0)作曲線y=x2+x+m切線,其中一條切線方程是( 。
A.2x+y+2=0B.3x-y+3=0C.x+y+1=0D.x-y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.曲線y=sin3x在點M($\frac{π}{3}$,0)處的切線的斜率為 ( 。
A.1B.-3C.2D.3

查看答案和解析>>

同步練習冊答案