14.設(shè)a∈R,“cos2α=0”是“sinα=cosα”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 由cos2α=cos2α-sin2α,即可判斷出.

解答 解:由cos2α=cos2α-sin2α=(cosα-sinα)(cosα+sinα)=0,即cosα-sinα=0或cosα+sinα=0,即cosα=sinα或cosα=-sinα,
∴“cos2α=0”是“sinα=cosα”的必要不充分條件,
故選:B.

點評 本題考查了倍角公式、簡易邏輯的判定方法,考查了推理能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=ax3+bx2+cx+d,其導(dǎo)函數(shù)的圖象如圖所示,則函數(shù)f(x)的圖象只可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若函數(shù)y=$\frac{3}{4}$x2-3x+4,x∈[a,b]總滿足y∈[a,b],則不等式(a+b)x>-1的解集為( 。
A.(-$\frac{1}{4}$,+∞)B.(-4,+∞)C.(-∞,-$\frac{1}{4}$)D.(-∞,-4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在數(shù)列{an}中,a1=1,(n+3)an+1=2nan(n∈N+),記bn=n(n+1)(n+2)an
(1)求證:{bn}為等比數(shù)列;
(2)設(shè)cn=$\frac{{a}_{n}}{3•{2}^{n}}$,且數(shù)列{cn}的前n項和為Sn,求證:Sn<$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.(1+x)3(1+y)4的展開式中x2y2的系數(shù)是18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在等比數(shù)列{an}中,a1=1,a4=8
(I)求數(shù)列{an}的通項公式;
(Ⅱ)若a3,a5分別為等差數(shù)列{bn}的第6項和第8項,求|b1|+|b2|+|b3|+…+|bn|(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=-$\frac{{x}^{2}+4x+7}{x+1}$,g(x)=lnx-$\frac{1}{2}$x2+$\frac{7}{2}$,實數(shù)a,b滿足a<b<-1,若?x1∈[a,b],?x2∈(0,+∞),使得f(x1)=g(x2)成立,則b-a的最大值為( 。
A.2B.2$\sqrt{3}$C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,2bsinB=(2a+c)sinA+(2c+a)sinC.
(Ⅰ) 求B的大;
(Ⅱ) 若b=$\sqrt{3}$,A=$\frac{π}{4}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=lnx的圖象總在函數(shù)g(x)=ax2-$\frac{1}{2}$(a>0)圖象的下方,則實數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{2}$]B.(0,$\frac{1}{2}$)C.[$\frac{1}{2}$,+∞)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

同步練習冊答案