【題目】已知橢圓的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)恰好是拋物線(xiàn)的焦點(diǎn).
(1)求橢圓的方程;
(2)已知、是橢圓上的兩點(diǎn),是橢圓上位于直線(xiàn)兩側(cè)的動(dòng)點(diǎn).
①若直線(xiàn)的斜率為,求四邊形面積的最大值;
②當(dāng)運(yùn)動(dòng)時(shí),滿(mǎn)足,試問(wèn)直線(xiàn)的斜率是否為定值,請(qǐng)說(shuō)明理由.
【答案】(1);(2)直線(xiàn)的斜率為定值。
【解析】試題分析:
(1)由拋物線(xiàn)的焦點(diǎn)坐標(biāo)可得,再結(jié)合離心率可求得,從而可得橢圓的方程.(2)①設(shè)直線(xiàn)方程為,,將直線(xiàn)方程與橢圓方程聯(lián)立消元后可得,然后由四邊形的特點(diǎn)得,根據(jù)函數(shù)的知識(shí)可得的最大值.②由可得直線(xiàn)的斜率之和為0,設(shè)的方程為,與橢圓方程聯(lián)立消元后可得,同理,然后根據(jù)斜率公式求得直線(xiàn)AB的斜率驗(yàn)證即可.
試題解析:
(1)由題意得拋物線(xiàn)的焦點(diǎn)為,
∴,
∵,
∴
∴,
∴橢圓的方程為.
(2)①由題意設(shè)直線(xiàn)方程為,
由消去y整理得,
∵直線(xiàn)AB與橢圓交于兩點(diǎn),
∴,解得.
設(shè),
則,
又,
∴,
∴當(dāng)時(shí),取得最大,
即四邊形面積的最大值為.
②當(dāng)時(shí),直線(xiàn)的斜率之和為0,
設(shè)直線(xiàn)的斜率為,則直線(xiàn)的斜率為,
故直線(xiàn)的方程為,
由消去y整理得
,
∴,
同理.
∴,
∴,
故直線(xiàn)的斜率為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,底面是直角梯形,,,是上的一點(diǎn).
(1)求證:平面平面;
(2)若是的中點(diǎn),,且直線(xiàn)與平面所成角的正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為奇函數(shù).
(1)求a的值,并證明是R上的增函數(shù);
(2)若關(guān)于t的不等式f(t2-2t)+f(2t2-k)<0的解集非空,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是橢圓()的左頂點(diǎn),左焦點(diǎn)是線(xiàn)段的中點(diǎn),拋物線(xiàn)的準(zhǔn)線(xiàn)恰好過(guò)點(diǎn).
(1)求橢圓的方程;
(2)如圖所示,過(guò)點(diǎn)作斜率為的直線(xiàn)交橢圓于點(diǎn),交軸于點(diǎn),若為線(xiàn)段的中點(diǎn),過(guò)作與直線(xiàn)垂直的直線(xiàn),證明對(duì)于任意的(),直線(xiàn)過(guò)定點(diǎn),并求出此定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中, , ,以為直徑的圓記為圓,圓過(guò)原點(diǎn)的切線(xiàn)記為,若以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓的極坐標(biāo)方程;
(2)若過(guò)點(diǎn),且與直線(xiàn)垂直的直線(xiàn)與圓交于, 兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)站從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶(hù)中隨機(jī)抽取2000名進(jìn)行調(diào)查,將受訪(fǎng)用戶(hù)按年齡分成5組: 并整理得到如下頻率分布直方圖:
(1)求的值;
(2)從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶(hù)中隨機(jī)抽取一人,估計(jì)其年齡低于40歲的概率;
(3)估計(jì)春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶(hù)的平均年齡.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著共享單車(chē)的成功運(yùn)營(yíng),更多的共享產(chǎn)品逐步走入大家的世界,共享汽車(chē)、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機(jī)抽取人對(duì)共享產(chǎn)品對(duì)共享產(chǎn)品是否對(duì)日常生活有益進(jìn)行了問(wèn)卷調(diào)查,并對(duì)參與調(diào)查的人中的性別以及意見(jiàn)進(jìn)行了分類(lèi),得到的數(shù)據(jù)如下表所示:
(Ⅰ)根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)的概率不超過(guò)的前提下,認(rèn)為對(duì)共享產(chǎn)品的態(tài)度與性別有關(guān)系?
(Ⅱ)現(xiàn)按照分層抽樣從認(rèn)為共享產(chǎn)品增多對(duì)生活無(wú)益的人員中隨機(jī)抽取人,再?gòu)?/span>人中隨機(jī)抽取人贈(zèng)送超市購(gòu)物券作為答謝,求恰有人是女性的概率.
參考公式: .
臨界值表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】采用系統(tǒng)抽樣方法從人中抽取人做問(wèn)卷調(diào)查,為此將他們隨機(jī)編號(hào)為,,,,分組后某組抽到的號(hào)碼為41.抽到的人中,編號(hào)落入?yún)^(qū)間 的人數(shù)為( )
A. 10 B. C. 12 D. 13
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)的參數(shù)方程為 (為參數(shù))
寫(xiě)出直線(xiàn)的普通方程與曲線(xiàn)的直角坐標(biāo)方程;
(2)設(shè)曲線(xiàn)經(jīng)過(guò)伸縮變換后得到曲線(xiàn),設(shè)為上任意一點(diǎn),
求的最小值,并求相應(yīng)的點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com