7.設(shè)正有理數(shù)a1是$\sqrt{3}$的一個(gè)近似值,令a2=1+$\frac{2}{1+{a}_{1}}$,求證:
(1)$\sqrt{3}$介于a1與a2之間;
(2)a2比a1更接近于$\sqrt{3}$.

分析 (1)利用作差法,再因式分解,確定其符號(hào),即可得到結(jié)論;
(2)利用作差法,判斷|a2-$\sqrt{3}$|-|a1-$\sqrt{3}$|<0,即可得到結(jié)論

解答 證明:(1)a2-$\sqrt{3}$=1+$\frac{2}{1+{a}_{1}}$-$\sqrt{3}$=$\frac{(1-\sqrt{3})({a}_{1}-\sqrt{3})}{1+{a}_{1}}$,
∵若a1>$\sqrt{3}$,∴a1-$\sqrt{3}$>0,而1-$\sqrt{3}$<0,
∴a2<$\sqrt{3}$
∵若a1<$\sqrt{3}$,∴a1-$\sqrt{3}$<0,而1-$\sqrt{3}$<0,
∴a2>$\sqrt{3}$,
故$\sqrt{3}$介于a1與a2之間;
(2)|a2-$\sqrt{3}$|-|a1-$\sqrt{3}$|=$\frac{(1-\sqrt{3})({a}_{1}-\sqrt{3})}{1+{a}_{1}}$-|a1-$\sqrt{3}$|=|a1-$\sqrt{3}$|×$\frac{\sqrt{3}-2-{a}_{1}}{1+{a}_{1}}$,
∵a1>0,$\sqrt{3}$-2<0,|a1-$\sqrt{3}$|>0,
∴|a2-$\sqrt{3}$|-|a1-$\sqrt{3}$|<0
∴|a2-$\sqrt{3}$|<|a1-$\sqrt{3}$|
∴a2比a1更接近于$\sqrt{3}$.

點(diǎn)評(píng) 本題考查不等式的證明,考查作差法的運(yùn)用,確定差的符號(hào)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△OAB中,C為邊AB上任意一點(diǎn),D為OC上靠近O的一個(gè)三等分點(diǎn),若$\overline{OD}$=λ$\overline{OA}$+μ$\overline{OB}$,則λ+μ的值為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f1(x)=$\frac{1}{1+x}$-$\frac{1}{(1+x)^{2}}$(t-x),其中t為正常數(shù).
(1)求函數(shù)f1(x)在(0,+∞)上的最大值;
(2)設(shè)數(shù)列{an}滿足:a1=$\frac{5}{3}$,3an+1=an+2,完成下面兩個(gè)問題:
①求證:對(duì)?x>0,$\frac{1}{{a}_{n}}$≥f${\;}_{\frac{2}{{3}^{n}}}$(x)(n∈N*);
②對(duì)?n∈N*,你能否比較$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$與$\frac{{n}^{2}}{n+1}$的大小?若能,請(qǐng)給予證明;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.集合{1,2,3,…,2015,2016}的子集個(gè)數(shù)為22016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.對(duì)于任意集合X與Y,定義:①X-Y={x|x∈X且x∉Y},②X△Y=(X-Y)∪(Y-X),已知A={y|y=x2,x∈R},B={y|-2≤y≤2},則A△B=[-3,0)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)點(diǎn)A∈平面α,點(diǎn)B∈平面β,α∩β=l,且點(diǎn)A∉直線l,點(diǎn)B∉直線l,則直線l與過A、B兩點(diǎn)的直線的位置關(guān)系異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在n行n列矩陣$(\begin{array}{l}{1}&{2}&{3}&{…}&{n-2}&{n-1}&{n}\\{2}&{3}&{4}&{…}&{n-1}&{n}&{1}\\{3}&{4}&{5}&{…}&{n}&{1}&{2}\\{…}&{…}&{…}&{…}&{…}&{…}&{…}\\{n}&{1}&{2}&{…}&{n-3}&{n-2}&{n-1}\end{array})$中,若記位于第i行第j列的數(shù)為aij(i,j=1,2,…,n),則當(dāng)n=9時(shí),表中所有滿足2i<j的aij的和為88.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知y=f(x)是二次函數(shù),頂點(diǎn)為(-1,-4),且與x軸的交點(diǎn)為(1,0).
(1)求出f(x)的解析式;
(2)求y=f(x)在區(qū)間[-2,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某公司的班車在7:30,8:00,8:30發(fā)車,小明在7:50至8:30之間到達(dá)發(fā)車站坐班車,且到達(dá)發(fā)車站的時(shí)刻是隨機(jī)的,則他等車時(shí)間不超過10分鐘的概率是( 。
A.$\frac{1}{3}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案