20.在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,且a=2,A=60°,若三角形兩解,則b的取值范圍為( 。
A.(1,2)B.(1,$\frac{2\sqrt{3}}{3}$)C.($\frac{2\sqrt{3}}{3},2$)D.(2,$\frac{4\sqrt{3}}{3}$)

分析 △ABC有兩解時(shí)需要:bsinA<a<b,代入數(shù)據(jù),求出b的范圍.

解答 解:由題意得,△ABC有兩解時(shí)需要:bsinA<a<b,
則bsin60°<2<b,解得2<b<$\frac{4\sqrt{3}}{3}$;
故選:D.

點(diǎn)評(píng) 本題考查了解三角形一題多解的問(wèn)題,注意理解,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知sinx+cosx=$\frac{1}{5}$且0<x<π,求cosx-sinx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.將下列集合用區(qū)間表示出來(lái).
(1){x|x≥1}=[1,+∞).
(2){x|2≤x≤8}=[2,8].
(3){y|y=$\frac{1}{x}$}=(-∞,0)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知α是第三象限角,tanα=$\frac{4}{3}$,則cosα=( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.-$\frac{3}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.三個(gè)數(shù)成等差數(shù)列,它們的和為6,積為-10,求這三個(gè)數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知實(shí)數(shù)x,y滿(mǎn)足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y≥0}\\{x≤1}\end{array}\right.$.
(1)求出不等式組所表示的平面區(qū)域的面積;
(2)求目標(biāo)函數(shù)z=2x+4y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知tan(α+β)=3,tanβ=2,則tanα等于( 。
A.-3B.3C.-$\frac{1}{7}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)全集U=R,集合A=x|y=$\frac{1}{\sqrt{a-x}}$},B=x|x2-x-6=0}.
(1)若a=-1,求A∩B;
(2)若(∁UA)∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(1)[125${\;}^{\frac{1}{3}}$+($\frac{1}{16}$)${\;}^{\frac{1}{2}}$+49${\;}^{\frac{1}{2}}$]${\;}^{\frac{1}{4}}$;
(2)($\root{3}{2}$×$\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-4($\frac{16}{49}$)${\;}^{-\frac{1}{2}}$-$\root{4}{2}$×80.25-(-2005)0

查看答案和解析>>

同步練習(xí)冊(cè)答案