分析 由線性約束條件畫出可行域,(1)求出頂點坐標,即可求解可行域的面積.
(2)通過目標函數(shù)的幾何意義直接求解目標函數(shù)的最大值.
解答 解:(1)畫出可行域,得在直線x-y+2=0與直線x+y=0的交點A(-1,1),x-y+2=0與x=1的交點B(1,3),直線x=1與x+y=0的交點C(1,-1),可行域的面積為:$\frac{1}{2}×2×4$=4.
(2)目標函數(shù)z=2x+4y在B處的最大值為:14.
點評 本題考查不等式組所表示的平面區(qū)域和簡單的線性規(guī)劃問題.在線性規(guī)劃問題中目標函數(shù)取得最值的點一定是區(qū)域的頂點和邊界,在邊界上的值也等于在這個邊界上的頂點的值,故在解答選擇題或者填空題時,只要能把區(qū)域的頂點求出,直接把頂點坐標代入進行檢驗即可.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,2) | B. | (1,$\frac{2\sqrt{3}}{3}$) | C. | ($\frac{2\sqrt{3}}{3},2$) | D. | (2,$\frac{4\sqrt{3}}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $-\frac{5}{27}$ | C. | 1或$-\frac{5}{27}$ | D. | $[{-\frac{5}{27},1}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com