【題目】函數(shù)f(x)的定義域?yàn)镈,若滿(mǎn)足①f(x)在D內(nèi)是單調(diào)函數(shù),②存在[m,n]D,使f(x)在[m,n]上的值域?yàn)? ,那么就稱(chēng)y=f(x)為“好函數(shù)”.現(xiàn)有f(x)=loga(ax+k),(a>0,a≠1)是“好函數(shù)”,則k的取值范圍是(
A.(0,+∞)
B.
C.
D.

【答案】C
【解析】解:因?yàn)楹瘮?shù)f(x)=loga(ax+k),(a>0,a≠1)在其定義域內(nèi)為增函數(shù),則若函數(shù)y=f(x)為“好函數(shù)”, 方程 必有兩個(gè)不同實(shí)數(shù)根,
,
∴方程t2﹣t+k=0有兩個(gè)不同的正數(shù)根,
故選C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的值域(求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是在豎直平面內(nèi)的一個(gè)“通道游戲”.圖中豎直線(xiàn)段和斜線(xiàn)段都表示通道,并且在交點(diǎn)處相遇,若豎直線(xiàn)段有第一條的為第一層,有二條的為第二層,…,依此類(lèi)推.現(xiàn)有一顆小彈子從第一層的通道里向下運(yùn)動(dòng).若在通道的分叉處,小彈子以相同的概率落入每個(gè)通道,記小彈子落入第n層第m個(gè)豎直通道(從左至右)的概率為P(n,m).某研究性學(xué)習(xí)小組經(jīng)探究發(fā)現(xiàn)小彈子落入第n層的第m個(gè)通道的次數(shù)服從二項(xiàng)分布,請(qǐng)你解決下列問(wèn)題.

(1)求P(2,1),P(3,2)及P(4,2)的值,并猜想P(n,m)的表達(dá)式.(不必證明)
(2)設(shè)小彈子落入第6層第m個(gè)豎直通道得到分?jǐn)?shù)為ξ,其中ξ= ,試求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的函數(shù)
(1)如果函數(shù) ,求b、c;
(2)設(shè)當(dāng)x∈( ,3)時(shí),函數(shù)y=f(x)﹣c(x+b)的圖象上任一點(diǎn)P處的切線(xiàn)斜率為k,若k≤2,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的頂點(diǎn)A(5,1),AB邊上的中線(xiàn)CM所在直線(xiàn)方程為2x﹣y﹣5=0,∠B的平分線(xiàn)BN所在直線(xiàn)方程為x﹣2y﹣5=0.求:
(1)頂點(diǎn)B的坐標(biāo);
(2)直線(xiàn)BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,M,N分別是BC1 , CD1的中點(diǎn),則下列說(shuō)法錯(cuò)誤的是(
A.MN與CC1垂直
B.MN與AC垂直
C.MN與BD平行
D.MN與A1B1平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程是為參數(shù)),以為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,且直線(xiàn)與曲線(xiàn)交于兩點(diǎn).

(Ⅰ)求曲線(xiàn)的直角坐標(biāo)方程及直線(xiàn)恒過(guò)的定點(diǎn)的坐標(biāo);

(Ⅱ)在(Ⅰ)的條件下,若,求直線(xiàn)的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線(xiàn)為

1)求實(shí)數(shù), 的值;

2)是否存在實(shí)數(shù),當(dāng)時(shí),函數(shù)的最小值為,若存在,求出的取值范圍;若不存在,說(shuō)明理由;

3)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為,公差,且, 成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解心肺疾病是否與年齡相關(guān),現(xiàn)隨機(jī)抽取80名市民,得到數(shù)據(jù)如下表:

患心肺疾病

不患心肺疾病

合計(jì)

大于40歲

16

小于或等于40歲

12

合計(jì)

80

已知在全部的80人中隨機(jī)抽取1人,抽到不患心肺疾病的概率為
下面的臨界值表供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ,其中n=a+b+c+d)
(1)請(qǐng)將2×2列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為患心肺疾病與年齡有關(guān)?

查看答案和解析>>

同步練習(xí)冊(cè)答案