精英家教網 > 高中數學 > 題目詳情
18.某三棱錐的三視圖如圖所示,其側(左)視圖為直角三角形,則該三棱錐最長的棱長等于( 。
A.$4\sqrt{2}$B.$\sqrt{34}$C.$\sqrt{41}$D.$5\sqrt{2}$

分析 根據幾何體的三視圖,得:該幾何體是底面為直角三角形,側面垂直于底面,高為5的三棱錐,即可求得.

解答 解:根據幾何體的三視圖,得:該幾何體是底面為直角三角形,側面垂直于底面,高為5的三棱錐,
棱錐最長的棱長等于$\sqrt{25+16}$=$\sqrt{41}$,
故選C.

點評 本題考查了空間幾何體的三視圖的應用問題,比較基礎

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

8.設變量x,y滿足約束條件$\left\{\begin{array}{l}x+2y-4≤0\\ 3x+y-3≥0\\ x-y-1≤0\end{array}\right.$,則$z=\frac{y}{x+1}$的最大值為(  )
A.$\frac{9}{7}$B.$\frac{1}{3}$C.0D.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.若a<b<0,那么下列不等式成立的是( 。
A.ab<b2B.a2<b2C.lg(-ab)<lg(-a2D.2${\;}^{\frac{1}}$<2${\;}^{\frac{1}{a}}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.如圖,有一建筑物OP,為了測量它的高度,在地面上選一長度為40m的基線AB,若在點A處測得P點的仰角為30°,在B點處的仰角為45°,且∠AOB=30°,則建筑物的高度為( 。
A.20mB.20$\sqrt{2}$mC.20$\sqrt{3}$mD.40m

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.如圖甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,OD=3OA,現將梯形ABCD沿OB折起如圖乙所示的四棱錐P-OBCD,使得PC=$\sqrt{3}$,點E是線段PB上一動點.

(1)證明:DE和PC不可能垂直;
(2)當PE=2BE時,求PD與平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知等差數列{an}的前n項和為Sn,且S6=5S2+18,a3n=3an,數列{bn}滿足b1•b2•…•bn=4Sn
(Ⅰ)求數列{an},{bn}的通項公式;
(Ⅱ)令cn=log2bn,且數列$\left\{{\frac{1}{{{c_n}•{c_{n+1}}}}}\right\}$的前n項和為Tn,求T2016

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.如圖,在圓內接四邊形ABCD中,AB=2,AD=1,$\sqrt{3}$BC=$\sqrt{3}$BDcosα+CDsinβ,則四邊形ABCD周長的取值范圍為(3+$\sqrt{7}$,3+2$\sqrt{7}$).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.某校隨機調查了110名不同性別的學生每天在校的消費情況,規(guī)定:50元以下為正常消費,大于或等于50元為非正常消費.統(tǒng)計后,得到如下的2×2列聯(lián)表,已知在調查對象中隨機抽取1人,為非正常消費的概率為$\frac{3}{11}$.
正常非正常合計
302050
501060
合計8030110
(Ⅰ)請完成上面的列聯(lián)表;
(Ⅱ)根據列聯(lián)表的數據,能否有99%的把握認為消費情況與性別有關系?
附臨界值表參考公式:
P(K2≥k00.1000.050.0250.0100.001
k02.7063.8415.0246.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.口袋中裝有一些大小相同的紅球、白球和黑球,從中摸出一個球,摸出紅球的概率是0.43,摸出白球的概率是0.27,那么摸出黑球的概率是( 。
A.0.43B.0.27C.0.3D.0.7

查看答案和解析>>

同步練習冊答案