分析 由題意可得b=-lna+2a2,d=3c-2.分別令y=f(x)=-lnx+2x2,y=g(x)=3x-2,轉(zhuǎn)化為兩個(gè)函數(shù)f(x)與g(x)的點(diǎn)之間的距離的最小值.設(shè)與直線y=3x-2平行且與曲線f(x)相切的切點(diǎn)為P(x0,y0),求出切點(diǎn)P到直線y=3x-2的距離d,則(a-c)2+(b-d)2的最小值為d2.
解答 解:∵實(shí)數(shù)a,b,c,d滿(mǎn)足$\frac{2{a}^{2}-lna}$=$\frac{3c-2}oskn4sh$=1
可得b=-lna+2a2,d=3c-2,
分別令y=f(x)=-lnx+2x2,y=g(x)=3x-2,
轉(zhuǎn)化為兩個(gè)函數(shù)f(x)與g(x)的點(diǎn)之間的距離的最小值,
f′(x)=-$\frac{1}{x}$+4x,設(shè)與直線y=3x-2平行且與曲線f(x)相切的切點(diǎn)為P(x0,y0),
則-$\frac{1}{{x}_{0}}$+4x0=3,x0>0,解得x0=1,可得切點(diǎn)P(1,2),
切點(diǎn)P(1,2)到直線y=3x-2的距離d=$\frac{|3-2-2|}{\sqrt{10}}$=$\frac{1}{\sqrt{10}}$.
∴(a-c)2+(b-d)2的最小值為d2=$\frac{1}{10}$.
故答案為:$\frac{1}{10}$.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究曲線的切線、平行線之間的斜率關(guān)系、點(diǎn)到直線的距離公式、函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $1-\frac{π}{6}$ | D. | $1-\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com