9.已知△ABC中,邊a,b,c的對(duì)角分別為A,B,C,且a=$\sqrt{2}$,c=$\sqrt{6}$,C=$\frac{2π}{3}$,則△ABC的面積S=$\frac{\sqrt{3}}{2}$.

分析 由已知及正弦定理可得sinA=$\frac{asinC}{c}$=$\frac{1}{2}$,又結(jié)合大邊對(duì)大角可得A為銳角,從而可求A,進(jìn)而利用三角形內(nèi)角和定理可求B,利用三角形面積公式即可得解.

解答 解:△ABC中,∵a=$\sqrt{2}$,c=$\sqrt{6}$,C=$\frac{2π}{3}$,
∴由正弦定理可得:sinA=$\frac{asinC}{c}$=$\frac{\sqrt{2}×\frac{\sqrt{3}}{2}}{\sqrt{6}}$=$\frac{1}{2}$,
又∵a<c,A為銳角.
∴A=$\frac{π}{6}$,B=π-A-C=$\frac{π}{6}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×\sqrt{2}×\sqrt{6}×$$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題主要考查了正弦定理,大邊對(duì)大角,三角形內(nèi)角和定理,三角形面積公式在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),直線(xiàn)l不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,l與C有兩個(gè)交點(diǎn)A,B,線(xiàn)段AB的中點(diǎn)為M.直線(xiàn)OM的斜率與l的斜率的乘積為( 。
A.$\frac{b^2}{a^2}$B.-$\frac{b^2}{a^2}$
C.-$\frac{c^2}{a^2}$D.不確定,隨A,B的變化而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知點(diǎn)Q(x0,1),若在圓O:x2+y2=1上存在點(diǎn)P,使得∠OQP=60°,則x0的取值范圍是( 。
A.[-$\frac{1}{3}$,$\frac{1}{3}$]B.[-$\frac{1}{2}$,$\frac{1}{2}$]C.[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$]D.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知tanα=2,則tan(α+$\frac{π}{4}$)=-3,cos2α=$\frac{1}{5}$,$\frac{sinα}{sinα+cosα}$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若拋物線(xiàn)C:x2=2py過(guò)點(diǎn)(2,5),則拋物線(xiàn)C的準(zhǔn)線(xiàn)方程為y=-$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知拋物線(xiàn)x=ay2(a>0)的焦點(diǎn)與雙曲線(xiàn)$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1的右焦點(diǎn)重合,則a=( 。
A.4B.8C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某市擬定2016年城市建設(shè)A,B,C三項(xiàng)重點(diǎn)工程,該市一大型城建公司準(zhǔn)備參加這三個(gè)工程的競(jìng)標(biāo),假設(shè)這三個(gè)工程競(jìng)標(biāo)成功與否相互獨(dú)立,該公司對(duì)A,B,C三項(xiàng)重點(diǎn)工程競(jìng)標(biāo)成功的概率分別為a,b,$\frac{1}{4}$(a>b),已知三項(xiàng)工程都競(jìng)標(biāo)成功的概率為$\frac{1}{24}$,至少有一項(xiàng)工程競(jìng)標(biāo)成功的概率為$\frac{3}{4}$.
(1)求a與b的值;
(2)公司準(zhǔn)備對(duì)該公司參加A,B,C三個(gè)項(xiàng)目的競(jìng)標(biāo)團(tuán)隊(duì)進(jìn)行獎(jiǎng)勵(lì),A項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)2萬(wàn)元,B項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)4萬(wàn)元,C項(xiàng)目競(jìng)標(biāo)成功獎(jiǎng)勵(lì)6萬(wàn)元,求競(jìng)標(biāo)團(tuán)隊(duì)獲得獎(jiǎng)勵(lì)金額的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.把函數(shù)y=sin($\frac{π}{4}$-2x)向右平移$\frac{π}{8}$個(gè)單位,然后把橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,則所得到的函數(shù)的解析式為y=cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知雙曲線(xiàn)C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,拋物線(xiàn)x2=4$\sqrt{6}$y的焦點(diǎn)B是雙曲線(xiàn)虛軸上的一個(gè)頂點(diǎn),線(xiàn)段BF與雙曲線(xiàn)C的右支交于點(diǎn)A,若$\overrightarrow{BA}$=2$\overrightarrow{AF}$,則雙曲線(xiàn)C的方程為( 。
A.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1B.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1C.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{6}$=1

查看答案和解析>>

同步練習(xí)冊(cè)答案