13.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{lg|x-2|(x≠2)}\\{1,(x=2)}\end{array}}$,若關(guān)于x的方程f2(x)+bf(x)+c=0有5個(gè)不同的實(shí)數(shù)解,則b+c=-1.

分析 令f(x)=t,根據(jù)f(x)的函數(shù)圖象判斷f(x)=t的解的個(gè)數(shù),得出t=1為方程t2+bt+c=0的解.

解答 解:做出f(x)的函數(shù)圖象如圖所示:

設(shè)f(x)=t,則當(dāng)t=1時(shí),f(x)=t有三解,當(dāng)t≠1時(shí),f(x)=t有兩解.
∵關(guān)于x的方程f2(x)+bf(x)+c=0有5個(gè)不同的實(shí)數(shù)解,
∴關(guān)于t的方程t2+bt+c=0有兩解,且t=1是其中一解,
∴1+b+c=0,即b+c=-1.
故答案為-1.

點(diǎn)評(píng) 本題考查了方程的根與函數(shù)圖象的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.正方體ABCD-A1B1C1D1中,異面直線AD1與A1C1所成角為(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,那么f(x)的圖象最有可能是圖中的( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.直線y=ax+a與圓x2+y2=1的位置關(guān)系一定是(  )
A.與a的取值有關(guān)B.相切C.相交D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在一個(gè)由三個(gè)元件A,B,C構(gòu)成的系統(tǒng)中,已知元件A,B,C正常工作的概率分別是$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,且三個(gè)元件正常工作與否相互獨(dú)立,則這個(gè)系統(tǒng)正常工作的概率為:$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,四棱錐P-ABCD中,底面ABCD是矩形,且PA⊥CD,PA=AD,M、N分別為AB、PC的中點(diǎn).求證:
(Ⅰ)MN∥平面PAD;
(Ⅱ)MN⊥CD;
(Ⅲ)MN⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+3cosα\\ y=-3+3sinα\end{array}$(α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcosθ-2ρsinθ-3=0.
(1)分別寫出曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)若曲線C1與曲線C2交于P、Q兩點(diǎn),求△POQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.曲線f(x)=-$\sqrt{x}$在x=1處的切線方程為x+2y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在△ABC中,若sinBsinC=cos2$\frac{A}{2}$,則下面等式一定成立的是( 。
A.A=BB.A=CC.B=CD.A=B=C

查看答案和解析>>

同步練習(xí)冊(cè)答案