【題目】已知橢圓:ab0)過(guò)點(diǎn)E1),其左、右頂點(diǎn)分別為A,B,左、右焦點(diǎn)為F1F2,其中F10).

1)求橢圓C的方程:

2)設(shè)Mx0,y0)為橢圓C上異于AB兩點(diǎn)的任意一點(diǎn),MNAB于點(diǎn)N,直線(xiàn)lx0x+2y0y40,設(shè)過(guò)點(diǎn)Ax軸垂直的直線(xiàn)與直線(xiàn)l交于點(diǎn)P,證明:直線(xiàn)BP經(jīng)過(guò)線(xiàn)段MN的中點(diǎn).

【答案】1;(2)證明詳見(jiàn)解析.

【解析】

1)根據(jù)橢圓上一點(diǎn)到兩焦點(diǎn)的距離之和為2a,可求出a,已知焦點(diǎn)坐標(biāo),可知c,可求方程.

2)根據(jù)題意求出ABP的坐標(biāo),求PB直線(xiàn)方程,求出點(diǎn)N坐標(biāo),求出其中點(diǎn),可代入判斷在直線(xiàn)PB上.

1)由題意知,2a|EF1|+|EF2|4,

a2,c,b

故橢圓的方程為,

2)由(1)知A(﹣2,0),B2,0),

過(guò)點(diǎn)A且與x軸垂直的直線(xiàn)的方程為x=﹣2,

結(jié)合方程x0x+2y0y40,得點(diǎn)P(﹣2,),

直線(xiàn)PB的斜率為

直線(xiàn)PB的方程為,

因?yàn)?/span>MNAB于點(diǎn)N,所以Nx0,0),線(xiàn)段MN的中點(diǎn)坐標(biāo)(),

xx0,得

因?yàn)?/span>,所以,

即直線(xiàn)BP經(jīng)過(guò)線(xiàn)段MN的中點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列五個(gè)命題:

①已知直線(xiàn)、和平面,若,則

②平面上到一個(gè)定點(diǎn)和一條定直線(xiàn)的距離相等的點(diǎn)的軌跡是一條拋物線(xiàn);

③雙曲線(xiàn),則直線(xiàn)與雙曲線(xiàn)有且只有一個(gè)公共點(diǎn);

④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線(xiàn)不垂直的直線(xiàn)與另一個(gè)平面也不垂直;

⑤過(guò)的直線(xiàn)與橢圓交于、兩點(diǎn),線(xiàn)段中點(diǎn)為,設(shè)直線(xiàn)斜率為,直線(xiàn)的斜率為,則等于.

其中,正確命題的序號(hào)為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)aRa0.

1)當(dāng)a時(shí),求曲線(xiàn)yfx)在點(diǎn)(1,f1))處的切線(xiàn)方程;

2)討論函數(shù)fx)的單調(diào)性與單調(diào)區(qū)間;

3)若yfx)有兩個(gè)極值點(diǎn)x1,x2,證明:fx1+fx2)<9lna.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年春節(jié)期間,新型冠狀病毒(2019nCoV)疫情牽動(dòng)每一個(gè)中國(guó)人的心,危難時(shí)刻全國(guó)人民眾志成城.共克時(shí)艱,為疫區(qū)助力.我國(guó)SQ市共100家商家及個(gè)人為緩解湖北省抗疫消毒物資壓力,募捐價(jià)值百萬(wàn)的物資對(duì)口輸送湖北省H市.

1)現(xiàn)對(duì)100家商家抽取5家,其中2家來(lái)自A地,3家來(lái)自B地,從選中的這5家中,選出3家進(jìn)行調(diào)研.求選出3家中1家來(lái)自A地,2家來(lái)自B地的概率.

2)該市一商家考慮增加先進(jìn)生產(chǎn)技術(shù)投入,該商家欲預(yù)測(cè)先進(jìn)生產(chǎn)技術(shù)投入為49千元的月產(chǎn)增量.現(xiàn)用以往的先進(jìn)技術(shù)投入xi(千元)與月產(chǎn)增量yi(千件)(i12,3,…,8)的數(shù)據(jù)繪制散點(diǎn)圖,由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線(xiàn)的附近,且:,,,,其中,,,根據(jù)所給的統(tǒng)計(jì)量,求y關(guān)于x回歸方程,并預(yù)測(cè)先進(jìn)生產(chǎn)技術(shù)投入為49千元時(shí)的月產(chǎn)增量.

附:對(duì)于一組數(shù)據(jù)(u1,v1)(u2,v2),其回歸直線(xiàn)vα+βu的斜率和截距的最小二乘法估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)著名數(shù)學(xué)家華羅庚先生曾說(shuō):數(shù)缺形時(shí)少直觀(guān),形缺數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔裂分家萬(wàn)事休.在數(shù)學(xué)的學(xué)習(xí)和研究中,常用函數(shù)的圖象研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來(lái)琢磨函數(shù)的圖象特征.如函數(shù)的圖象大致為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)與圓相交于兩點(diǎn),點(diǎn),且,若,則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的極值點(diǎn);

2)定義:若函數(shù)的圖像與直線(xiàn)有公共點(diǎn),我們稱(chēng)函數(shù)有不動(dòng)點(diǎn).這里。,若,如果函數(shù)存在不動(dòng)點(diǎn),求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對(duì)統(tǒng)計(jì)圖理解錯(cuò)誤的是( )

A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬(wàn)件

B. 2018年1~4月的業(yè)務(wù)量同比增長(zhǎng)率均超過(guò)50%,在3月底最高

C. 從兩圖來(lái)看,2018年1~4月中的同一個(gè)月的快遞業(yè)務(wù)量與收入的同比增長(zhǎng)率并不完全一致

D. 從1~4月來(lái)看,該省在2018年快遞業(yè)務(wù)收入同比增長(zhǎng)率逐月增長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為正方形,平面,,點(diǎn)為線(xiàn)段的動(dòng)點(diǎn).記所成角的最小值為,當(dāng)為線(xiàn)段中點(diǎn)時(shí),二面角的大小為,二面角的大小為,則,的大小關(guān)系是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案