【題目】已知函數(shù)

Ⅰ)若曲線與直線相切,求的值.

Ⅱ)若設(shè)求證:有兩個(gè)不同的零點(diǎn),且.(為自然對(duì)數(shù)的底數(shù))

【答案】(Ⅰ)(Ⅱ)證明見(jiàn)解析.

【解析】

Ⅰ)設(shè)切點(diǎn)由導(dǎo)數(shù)的性質(zhì)可得結(jié)合切點(diǎn)在函數(shù)上,可得

Ⅱ)不妨設(shè),上單調(diào)遞減,由函數(shù)零點(diǎn)存在定理可得存在,使得,分類討論有:①當(dāng)時(shí),在區(qū)間上存在零點(diǎn),且.②當(dāng)時(shí),在區(qū)間上必存在零點(diǎn),且.據(jù)此即可證得題中的結(jié)論.

Ⅰ)設(shè)切點(diǎn)

又切點(diǎn)在函數(shù)上,

Ⅱ)不妨設(shè),,所以上單調(diào)遞減,

,

所以必存在,使得,即

.

①當(dāng)時(shí),

所以在區(qū)間上單調(diào)遞減,

注意到,

所以函數(shù)在區(qū)間上存在零點(diǎn),且.

②當(dāng)時(shí),所以在區(qū)間上單調(diào)遞增,

,

,

所以在區(qū)間上必存在零點(diǎn),且.

綜上,有兩個(gè)不同的零點(diǎn)、,且.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別是,橢圓上短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為;

(1)求橢圓的方程;

(2)過(guò)作垂直于軸的直線交橢圓兩點(diǎn)(點(diǎn)在第二象限),是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn),若,求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的長(zhǎng)軸長(zhǎng)為,且經(jīng)過(guò)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)橢圓右焦點(diǎn)作兩條互相垂直的弦,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)在互聯(lián)網(wǎng)上征集電視節(jié)目的現(xiàn)場(chǎng)參與觀眾,報(bào)名的共有12000人,分別來(lái)自4個(gè)地區(qū),其中甲地區(qū)2400人,乙地區(qū)4605人,丙地區(qū)3795人,丁地區(qū)1200人,主辦方計(jì)劃從中抽取60人參加現(xiàn)場(chǎng)節(jié)目,請(qǐng)?jiān)O(shè)計(jì)一套抽樣方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,過(guò)拋物線上一點(diǎn)作拋物線的切線,軸于點(diǎn).

(1)判斷的形狀;

(2) 兩點(diǎn)在拋物線上,點(diǎn)滿足,若拋物線上存在異于的點(diǎn),使得經(jīng)過(guò)三點(diǎn)的圓與拋物線在點(diǎn)處的有相同的切線,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上是增函數(shù),則的取值范圍是(  )

A. B. C. D.

【答案】C

【解析】

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關(guān)于a的不等式,解不等式即可得到a的取值范圍.

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),

則當(dāng)x∈[2,+∞)時(shí),

x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)

,f(2)=4+a>0

解得﹣4<a≤4

故選:C.

【點(diǎn)睛】

本題考查的知識(shí)點(diǎn)是復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對(duì)數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復(fù)合函數(shù)的單調(diào)性,構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.

型】單選題
結(jié)束】
10

【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,以的中線為折痕,將沿折起,如圖所示,構(gòu)成二面角,在面內(nèi)作,且

(1)求證:平面;

(2)如果二面角的大小為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形中, 、分別是上的點(diǎn), ,的中點(diǎn),現(xiàn)沿著翻折,使平面平面.

(Ⅰ)的中點(diǎn),求證:平面.

(Ⅱ)求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)圖象上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:

x

-4

-3

-2

-1

0

1

5

0

-3

-4

-3

m

1m= ;

2)在圖中畫出這個(gè)二次函數(shù)的圖象;

3)當(dāng)時(shí),x的取值范圍是

4)當(dāng)時(shí),y的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案