14.已知點(diǎn)A(x1,f(x1)),B(x2,f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,-2π<φ≤0)圖象上的任意兩點(diǎn),且角φ的終邊經(jīng)過(guò)點(diǎn)P(1,-$\sqrt{3}$),已知|f(x1)-f(x2)|=4時(shí),|x1-x2|的最小值為$\frac{π}{3}$.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)當(dāng)x∈[0,$\frac{π}{3}$]時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.

分析 (1)由題意,先求tanφ=-$\sqrt{3}$,根據(jù)φ的范圍,可求φ的值,再求出函數(shù)的周期,再利用周期公式求出ω的值,從而可求函數(shù)解析式.
(2)令2kπ+$\frac{π}{2}$≤3x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,即可解得函數(shù)的單調(diào)減區(qū)間.
(3)由題意可得,當(dāng)x∈[0,$\frac{π}{3}$]時(shí),f(x)∈[-$\sqrt{3}$,2],從而可得$\left\{{\begin{array}{l}{-\sqrt{3}(m-1)+2m≥0}\\{2(m-1)+2m≥0}\end{array}}\right.$,可得m的范圍.

解答 (本題滿分為16分)
解:(1)∵角φ的終邊經(jīng)過(guò)點(diǎn)$P(1,-\sqrt{3})$,
∴$-\frac{π}{2}<φ<0$,
∵$tanφ=-\sqrt{3},又∴φ=-\frac{π}{3}$…(2分)
∵|f(x1)-f(x2)|=4時(shí),|x1-x2|的最小值為$\frac{π}{3}$,
∴$\frac{T}{2}=\frac{π}{3}$,∴$ω=\frac{2π}{T}=3$…(4分)
∴$f(x)=2sin(3x-\frac{π}{3})$…(5分)
(2)令2kπ+$\frac{π}{2}$≤3x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,
可得:x∈$[\frac{2}{3}kπ+\frac{5π}{18},\frac{2}{3}kπ+\frac{11π}{18}](k∈Z)$.
同理可得單調(diào)減區(qū)間為$[\frac{2}{3}kπ+\frac{5π}{18},\frac{2}{3}kπ+\frac{11π}{18}](k∈Z)$.…(9分)(無(wú)過(guò)程扣2分)
(3)∵$x∈[0,\frac{π}{3}],3x-\frac{π}{3}∈[-\frac{π}{3},\frac{2π}{3}]$,
∴$sin(3x-\frac{π}{3})∈[-\frac{{\sqrt{3}}}{2},1]$,
∴$f(x)∈[-\sqrt{3},2]$…(11分)
令t=f(x),則不等式可化為(m-1)t+2m≥0對(duì)任意$t∈[-\sqrt{3},2]$恒成立,
∴$\left\{{\begin{array}{l}{-\sqrt{3}(m-1)+2m≥0}\\{2(m-1)+2m≥0}\end{array}}\right.$,
∴$m≥\frac{1}{2}$.…(16分)

點(diǎn)評(píng) 本題主要考查了正弦函數(shù)的圖象和性質(zhì),任意角的三角函數(shù)的定義,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,考查了正弦函數(shù)的定義域和值域,函數(shù)的恒成立問(wèn)題,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知△ABC的周長(zhǎng)為$\sqrt{3}+1$,且$sinA=\sqrt{3}sinC-sinB$.
(1)求邊c的長(zhǎng);    
(2)若△ABC的面積為$\frac{1}{3}sinC$,求角C的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知數(shù)列{an}是遞增的等比數(shù)例,a1+a4=9,a2a3=8,Sn為數(shù)列{an}的前n項(xiàng)和,則S4=( 。
A.15B.16C.18D.31

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓和雙曲線有相同的焦點(diǎn)F(5,0)和F(-5,0),其離心率e滿足方程 6e2-17e+5=0,求橢圓和雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(1)計(jì)算0.027${\;}^{-\frac{1}{3}}$-(-$\frac{1}{7}$)-2+256${\;}^{\frac{3}{4}}$-3-1+($\sqrt{2}$-1)0
(2)化簡(jiǎn)$\frac{{{a^{\frac{2}{3}}}\sqrt}}{{{a^{-\frac{1}{2}}}\root{3}}}÷{(\frac{{{a^{-1}}\sqrt{{b^{-1}}}}}{{b\sqrt{a}}})^{-\frac{2}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若集合A={x|-1<x≤3},B={x|x=2n-1,n∈N},則A∩B中元素個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.小華同學(xué)制作了一個(gè)簡(jiǎn)易的網(wǎng)球發(fā)射器,可用于幫忙練習(xí)定點(diǎn)接發(fā)球,如圖1所示,網(wǎng)球場(chǎng)前半?yún)^(qū)、后半?yún)^(qū)總長(zhǎng)為23.77米,球網(wǎng)的中間部分高度為0.914米,發(fā)射器固定安裝在后半?yún)^(qū)離球網(wǎng)底部8米處中軸線上,發(fā)射方向與球網(wǎng)底部所在直線垂直.為計(jì)算方便,球場(chǎng)長(zhǎng)度和球網(wǎng)中間高度分別按24米和1米計(jì)算,發(fā)射器和網(wǎng)球大小均忽略不計(jì).如圖2所示,以發(fā)射器所在位置為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系xOy,x軸在地平面上的球場(chǎng)中軸線上,y軸垂直于地平面,單位長(zhǎng)度為1米.已知若不考慮球網(wǎng)的影響,網(wǎng)球發(fā)射后的軌跡在方程=$\frac{1}{2}$kx-$\frac{1}{80}$(1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).發(fā)射器的射程是指網(wǎng)球落地點(diǎn)的橫坐標(biāo).

(1)求發(fā)射器的最大射程;
(2)請(qǐng)計(jì)算k在什么范圍內(nèi),發(fā)射器能將球發(fā)過(guò)網(wǎng)(即網(wǎng)球飛行到球網(wǎng)正上空時(shí),網(wǎng)球離地距離大于1米)?若發(fā)射器將網(wǎng)球發(fā)過(guò)球網(wǎng)后,在網(wǎng)球著地前,小明要想在前半?yún)^(qū)中軸線的正上空選擇一個(gè)離地面2.55米處的擊球點(diǎn)正好擊中網(wǎng)球,試問(wèn)擊球點(diǎn)的橫坐標(biāo)a最大為多少?并請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.六棱錐P-ABCDEF中,底面是正六邊形,頂點(diǎn)在底面的射影是底面正多邊形中心,G為PB的中點(diǎn),則三棱錐D-GAC與三棱錐P-GAC體積之比為( 。
A.1:1B.1:2C.2:1D.3:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知兩條直線l1:3x+4y-2=0與l2:2x+y+2=0的交點(diǎn)P,求:
(1)過(guò)點(diǎn)P且過(guò)原點(diǎn)的直線l的方程;
(2)若直線m與l平行,且點(diǎn)P到直線m的距離為3,求直線m的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案