5.設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,下列說法正確的有(3)(填序號(hào)).
(1)若m⊥n,n∥α,則m⊥α
(2)若m∥β,β⊥α,則m⊥α
(3)若m⊥β,n⊥β,n⊥α,則m⊥α
(4)若m⊥n,n⊥β,β⊥α,則m⊥α

分析 舉反例說明即可.

解答 解:對(duì)于(1),當(dāng)m?α?xí)r,顯然結(jié)論錯(cuò)誤,故(1)錯(cuò)誤;
對(duì)于(2),當(dāng)m與α,β的交線平行時(shí),顯然結(jié)論錯(cuò)誤,故(2)錯(cuò)誤;
對(duì)于(3),∵m⊥β,n⊥β,∵m∥n,又n⊥α,∴m⊥α,故(3)正確;
對(duì)于(4),當(dāng)m?α,n?α?xí)r,顯然結(jié)論錯(cuò)誤,故(4)錯(cuò)誤.
故答案為(3).

點(diǎn)評(píng) 本題考查了空間線面位置關(guān)系的判斷,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知命題p:實(shí)數(shù)m滿足m2-7ma+12a2<0(a>0),命題q:滿足方程$\frac{x^2}{m-1}$+$\frac{y^2}{2-m}$=1表示焦點(diǎn)在y軸上的橢圓,若¬p是¬q的必要而不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn,且2Sn+1=3an(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(2n+1)an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某地區(qū)為了了解某地區(qū)高中生的身體發(fā)育情況,對(duì)某一中學(xué)的隨機(jī)抽取的50名學(xué)生的體重進(jìn)行了測(cè)量,結(jié)果如下:(單位:kg)
42,38,29,36,41,43,54,43,34,44,40,59,39,42,44,50,37,44,45,29,48,45,53,48,37,28,46,50,37,44,42,39,51,52,62,47,59,46,45,67,53,49,65,47,54,63,58,43,46,58.
分組頻數(shù)頻率頻率/組距
[27,32)30.060.012
[32,37)30.060.012
[37,42)90.180.036
[42,47)160.320.064
[47,52)70.140.028
[52,57)50.100.020
[57,62)40.080.016
[62,67)30.060.012
(1)若以組距為5,完成下面樣本頻率分布表:
(2)根據(jù)(1)中的頻率分布表,畫出頻率分布直方圖;
(3)若本地區(qū)學(xué)生總?cè)藬?shù)為3000人,試根據(jù)抽樣比例,估計(jì)本地區(qū)學(xué)生體重在區(qū)間[37,57]內(nèi)所占的人數(shù)約為多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$f(x)=\sqrt{2-x}+\frac{3+x}{2x-1}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,2]B.(-∞,$\frac{1}{2}$)∪($\frac{1}{2}$,2]C.($\frac{1}{2}$,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.同時(shí)擲兩枚骰子,向上的點(diǎn)數(shù)之和是5的概率是( 。
A.$\frac{1}{11}$B.$\frac{1}{9}$C.$\frac{2}{5}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|-1<x≤0},B={a},A∪B=A,則實(shí)數(shù)a的取值范圍是( 。
A.[0,1)B.(-1,1)C.(-1,0]D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)y=x2-mx-3m+3的圖象過點(diǎn)(0,6),則它的解析式為( 。
A.y=x2-x+6B.y=x2+x+6C.y=x2-3x+6D.y=x2+3x+6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知實(shí)數(shù)x,y滿足x2+y2-4x-6y+9=0,則x2+y2的取值范圍是$[17-4\sqrt{13},17+4\sqrt{13}]$.

查看答案和解析>>

同步練習(xí)冊(cè)答案