在極坐標(biāo)系中,過點(diǎn)A(4,
2
)引圓ρ=4sinθ的一條切線,則切線長為
 
考點(diǎn):簡單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:首先,將極坐標(biāo)下的點(diǎn)A和圓的方程化為直角坐標(biāo)下的相應(yīng)的點(diǎn)和圓,然后,根據(jù)直角三角形中的邊角關(guān)系,求解切線長即可.
解答: 解:由ρ=4sinθ,得
x2+y2-4y=0,
∴x2+(y-2)2=4,
根據(jù)A(4,
2
),得
A(0,-4),
設(shè)圓心為O,半徑為r,則|OA|=6,
切線長為d=
OA2-r2
=
62-22
=4
2
,
故答案為:4
2
點(diǎn)評:本題重點(diǎn)考查點(diǎn)、圓的極坐標(biāo)方程和直角坐標(biāo)的互化、切線長的計(jì)算等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
3
x3+ax2+(2a-1)x,f(x)在(-9,-2)上單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,an+1=3an-3n,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的程序框圖表示求算式“2×3×5×9×17”之值,則判斷框內(nèi)不能填入(  )
A、k≤17?B、k≤23
C、k≤28?D、k≤33?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn+2=2an(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=log2an,Tn=
b1
a1
+
b2
a2
+…+
bn
an
,求滿足Tn
15
8
的最大正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求數(shù)列1,x,x2,…,xn-1的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知D是不等式組
x-2y≥0
x+3y≥0
所確定的平面區(qū)域,則圓x2+y2=4與D圍成的區(qū)域面積為(  )
A、
π
2
B、
4
C、π
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足條件
x+y-2≥0
x-y-2≤0
y≤2
,則z=x+y的最大值為(  )
A、2
B、4
C、2
5
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F為拋物線C:y2=4x的焦點(diǎn),點(diǎn)E在C的準(zhǔn)線上.點(diǎn)E在C的準(zhǔn)線上,且在x軸上方,線段EF的垂直平分線與C的準(zhǔn)線交于點(diǎn)Q(-1,
3
2
),與C交于點(diǎn)P,則△PEF的面積為( 。
A、20B、15C、10D、5

查看答案和解析>>

同步練習(xí)冊答案