【題目】已知函數(shù) .
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:若a<5,則對(duì)任意 ,有 .
【答案】
(1)解:f(x)的定義域?yàn)椋?,+∞),
,
∵a﹣1≥1
當(dāng)a﹣1>1時(shí),即a>2時(shí),f(x)的單調(diào)增區(qū)間為(0,1),(a﹣1,+∞);
單調(diào)減區(qū)間為(1,a﹣1).
當(dāng)a﹣1=1時(shí),即a=2時(shí),f(x)的單調(diào)增區(qū)間為(0,+∞)
(2)要證:對(duì)任意 ,
有 .
不防設(shè)x1>x2,
即證f(x1)﹣f(x2)>﹣(x1﹣x2)
即證f(x1)+x1>f(x2)+x2
設(shè) ,x>0
即證當(dāng)x1>x2時(shí),g(x1)>g(x2).
即證g(x)在(0,+∞)單調(diào)遞增.
∵
而△=(a﹣1)2﹣4(a﹣1)=(a﹣1)(a﹣5)
又∵2≤a<5,
∴△<0,
∴x2﹣(a﹣1)x+(a﹣1)>0恒成立,
∴ 對(duì)x∈(0,+∞)恒成立,
∴g(x)在(0,+∞)單調(diào)遞增.
∴原題得證.
【解析】(1)由 ,得當(dāng)a﹣1>1時(shí),即a>2時(shí),f(x)的單調(diào)增區(qū)間為(0,1),(a﹣1,+∞);單調(diào)減區(qū)間為(1,a﹣1).當(dāng)a﹣1=1時(shí),即a=2時(shí),f(x)的單調(diào)增區(qū)間為(0,+∞)(2)要證:對(duì)任意 ,有 .即證f(x1)+x1>f(x2)+x2設(shè) ,x>0,即證g(x)在(0,+∞)單調(diào)遞增.由 ,由g(x)在(0,+∞)單調(diào)遞增,從而原題得證.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ()的離心率為,以原點(diǎn)為圓心,橢圓的長(zhǎng)半軸長(zhǎng)為半徑的圓與直線相切.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)為動(dòng)直線與橢圓的兩個(gè)交點(diǎn),問(wèn):在軸上是否存在定點(diǎn),使得為定值?若存在,試求出點(diǎn)的坐標(biāo)和定值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①f(x)=x3﹣3x2是增函數(shù),無(wú)極值.
②f(x)=x3﹣3x2在(﹣∞,2)上沒(méi)有最大值
③由曲線y=x,y=x2所圍成圖形的面積是
④函數(shù)f(x)=lnx+ax存在與直線2x﹣y=0平行的切線,則實(shí)數(shù)a的取值范圍是(﹣∞,2)
其中正確命題的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f (x)=ex-ax-1,其中e為自然對(duì)數(shù)的底數(shù),a∈R.
(1)若a=e,函數(shù)g (x)=(2-e)x.
①求函數(shù)h(x)=f (x)-g (x)的單調(diào)區(qū)間;
②若函數(shù)的值域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)若存在實(shí)數(shù)x1,x2∈[0,2],使得f(x1)=f(x2),且|x1-x2|≥1,
求證:e-1≤a≤e2-e.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)P和0是兩個(gè)集合,定義集合PQ={x|x∈P,且x≠Q(mào)},如果P={x|log2x<1},Q={x||x﹣2|<1},那么PQ等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究小組到社區(qū)了解參加健美操運(yùn)動(dòng)人員的情況,用分層抽樣的方法抽取了40人進(jìn)行調(diào)查,按照年齡分成五個(gè)小組: ,并繪制成如圖所示的頻率分布直方圖.
(1)求該社區(qū)參加健美操運(yùn)動(dòng)人員的平均年齡;
(2)如果研究小組從該樣本中年齡在和的6人中隨機(jī)地抽取出2人進(jìn)行深入采訪,求被采訪的2人,年齡恰好都在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足:f(x)+f′(x)>1,f(0)=4,則不等式exf(x)>ex+3(其中e為自然對(duì)數(shù)的底數(shù))的解集為( )
A.(0,+∞)
B.(﹣∞,0)∪(3,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知全集 U=R,集合 A={x|3≤x<7},B={x|2<log2 x<4}.
(1)求A∪B;
(2)求(UA )∩B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn)O,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
x | 3 | ﹣2 | 4 | |
y | ﹣2 | 0 | ﹣4 |
(1)求C1、C2的標(biāo)準(zhǔn)方程;
(2)請(qǐng)問(wèn)是否存在直線l滿足條件:①過(guò)C2的焦點(diǎn)F;②與C1交不同兩點(diǎn)M、N且滿足 ?若存在,求出直線l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com