若不等式ax2+bx+c<0的解集為{x|x<0或x>β},(α<β<0),則不等式cx2-bx+a>0的解集為( 。
A、{x|-
1
β
<x<-
1
α
}
B、{x|
1
β
<x<
1
α
}
C、{x|-
1
α
<x<-
1
β
}
D、{x|x<-
1
α
或x>-
1
β
}
考點(diǎn):一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:根據(jù)一元二次不等式與一元二次方程的關(guān)系,結(jié)合根與系數(shù)的關(guān)系,進(jìn)行解答即可.
解答: 解:∵不等式ax2+bx+c<0的解集為{x|x<α或x>β},且(α<β<0),
∴方程ax2+bx+c=0的實(shí)數(shù)根為x=α和x=β,且a<0,
由根與系數(shù)的關(guān)系,得;
α+β=-
b
a
,αβ=
c
a
,
∴c<0,
-
b
c
=
α+β
αβ
=
1
α
+
1
β
,
a
c
=
1
αβ
=
1
α
1
β
;
∴方程cx2-bx+a=0的兩個(gè)實(shí)數(shù)根為
x=-
1
α
,x=-
1
β
,且-
1
α
<-
1
β
;
∴不等式cx2-bx+a>0的解集為{x|-
1
α
<x<-
1
β
}.
故選:C.
點(diǎn)評(píng):本題考查了一元二次不等式的解法與應(yīng)用問(wèn)題,也考查了一元二次方程根與系數(shù)的關(guān)系的問(wèn)題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)=-f(x+
3
2
),且f(-2)=f(-1)=-1,f(0)=2,f(1)+f(2)+…+f(2009)+f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
1+4
1
2
-x

(1)求f(x)+f(1-x)的值;
(2)求f(
1
1001
)+f(
2
1001
)+f(
3
1001
)+…+f(
1000
1001
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=loga(x+3)+6(a>0,a≠1)的圖象恒過(guò)定點(diǎn)M,橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦點(diǎn)分別為F1,F(xiàn)2,直線l經(jīng)過(guò)點(diǎn)M且與⊙C:x2+y2+2x-6y+9=0相切.
(1)求直線l的方程;
(2)若直線l經(jīng)過(guò)點(diǎn)F2并與橢圓G在x軸上方的交點(diǎn)為P,且cos∠F1PF2=
7
25
,求△PF1F2內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的右準(zhǔn)線方程為x=4,右頂點(diǎn)為A,上頂點(diǎn)為B,右焦點(diǎn)為F,斜率為2的直線l經(jīng)過(guò)點(diǎn)A,且點(diǎn)F到直線l的距離為
2
5
5

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)將直線l繞點(diǎn)A旋轉(zhuǎn),它與橢圓C相交于另一點(diǎn)P,當(dāng)B,F(xiàn),P三點(diǎn)共線時(shí),試確定直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
(x-y+5)(x+y)≥0
0≤x≤3
,表示的平面區(qū)域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)四個(gè)不同的小球放入四個(gè)不同的盒中,一共有
 
種不同的放法.
(2)四個(gè)相同的小球放入四個(gè)不同的盒中,一共有
 
種不同的放法.
(3)四個(gè)不同的小球放入四個(gè)不同的盒中且恰好有一個(gè)空盒的放法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知n∈N*,數(shù)列{an}的首項(xiàng)a1=1,函數(shù)f(x)=
1
3
x3-(an+n+3)x2+2(2n+6)an
x,若x=an+1是f(x)的極小值點(diǎn),則數(shù)列{an}的通項(xiàng)公式為( 。
A、an=
1,n=1
2n+4,n≥2
B、an=2n-1
C、an=
1    n=1
2n   n≥2
D、an=
1    n=1
2n+1  n≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sin4x+cos4x+2sin3xcosx-sinxcosx-
3
4
,求f(x)的最小正周期.

查看答案和解析>>

同步練習(xí)冊(cè)答案