求導(dǎo):(
x2+1
)′=
 
考點(diǎn):簡單復(fù)合函數(shù)的導(dǎo)數(shù)
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)的導(dǎo)數(shù)公式進(jìn)行求解即可.
解答: 解:
x2+1
=(x2+1) 
1
2
,
則函數(shù)的導(dǎo)數(shù)為y′=
1
2
(x2+1) -
1
2
(x2+1)′=
1
2
(x2+1) -
1
2
×2x=
x
x2+1
,
故答案為:
x
x2+1
點(diǎn)評:本題主要考查導(dǎo)數(shù)的計(jì)算,根據(jù)復(fù)合函數(shù)的導(dǎo)數(shù)公式是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
1
|x|
的圖象在第一象限的一支曲線上有一點(diǎn)A(a,c),點(diǎn)B(b,c+1)在該函數(shù)圖象的另外一支上,則關(guān)于一元二次方程ax2+bx+c=0的兩根x1,x2判斷正確的是( 。
A、x1+x2>1,x1•x2>0
B、x1+x2<0,x1•x2>0
C、0<x1+x2<1,x1•x2>0
D、x1+x2與x1•x2的符號都不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b為正數(shù)且a>b,則a2+
1
ab
+
1
a(a-b)
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)早[a,b]上是減函數(shù),試問,它在[-b,-a]上是增函數(shù)還是減函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sin(ωx+
π
3
)(ω>0)
,若g(x)=f(3x)在(0,
π
3
)
上是增函數(shù),則ω的最大值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}為等差數(shù)列,{bn}為等比數(shù)列.已知a1=b1=1,a2+a6=b4,b2b6=a4.分別求出a10和b10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“存在x>1,x2+(m-2)x+3-m<0”為假命題,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-2x>0},B={x|1<x<
5
},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:函數(shù)f(x)=x3-ax-1在區(qū)間[-1,1]上單調(diào)遞減命題q:存在x∈R,使等式x2+ax+1=0成立,如果命題p或q為真命題,p且q為假命題,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案