4.已知直線(k-3)x+(4-k)y+1=0與2(k-3)x-2y+3=0平行,那么k的值為( 。
A.1或3B.1或5C.3或5D.1或2

分析 利用兩直線平行,斜率相等,但在y軸上的截距不相等,即可得出結(jié)論.

解答 解:由題意,k=3,滿足題意,
k≠3時(shí),4-k=-1,∴k=5,
綜上所述,k=3或5,
故選C.

點(diǎn)評(píng) 本題主要考查兩直線平行的性質(zhì),即兩直線平行,斜率相等,但在y軸上的截距不相等,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知$α,β∈(\frac{11π}{4},\frac{13π}{4})$,則“tan2α>tan2β”的一個(gè)充分不必要條件是( 。
A.4α+1>4β+2B.${log_{\frac{1}{2}}}2α<{log_{\frac{1}{2}}}2β$
C.(α+1)3>β3D.α=β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知甲、乙兩人下棋,和棋的概率為$\frac{1}{2}$,乙勝的概率為$\frac{1}{3}$,則甲勝的概率為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在△ABC中,a=8,b=10,A=45°,則此三角形解的情況是( 。
A.一解B.兩解C.一解或兩解D.無(wú)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知等比數(shù)列{an},a3=-1,a7=-9,則a5=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=1,|{\overrightarrow b}|=\sqrt{2}$$,\overrightarrow a⊥(\overrightarrow a+\overrightarrow b)$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知曲線C的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}-\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)).
(1)寫出直線l的直角坐標(biāo)方程與曲線C的普通方程
(2)設(shè)曲線C經(jīng)過(guò)伸縮變換$\left\{{\begin{array}{l}{x'=x}\\{y'=2y}\end{array}}\right.$,得到曲線C',設(shè)曲線C'上任一點(diǎn)M(x0,y0),求M到的直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞減,命題q:對(duì)任意實(shí)數(shù)x都有x2-3ax+1>0恒成立;若p和q中有且只有一個(gè)命題為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.一個(gè)半徑為1cm的球與正四棱柱的六個(gè)面都相切,則該正四棱柱的體積為8cm3

查看答案和解析>>

同步練習(xí)冊(cè)答案