12.在△ABC中,a=8,b=10,A=45°,則此三角形解的情況是(  )
A.一解B.兩解C.一解或兩解D.無(wú)解

分析 由a,b及sinA的值,利用正弦定理即可求出sinB的值,發(fā)現(xiàn)B的值有兩種情況,即得到此三角形有兩解.

解答 解:在△ABC中,∵a=8,b=10,A=45°,
∴由正弦定理得:$\frac{a}{sinA}=\frac{sinB}$,
即sinB=$\frac{bsinA}{a}$=$\frac{10×\frac{\sqrt{2}}{2}}{8}$=$\frac{5\sqrt{2}}{8}$,
∵A=45°,可得0°<B<135°,
∴則B=arcsin$\frac{5\sqrt{2}}{8}$或π-arcsin$\frac{5\sqrt{2}}{8}$,
即此三角形解的情況是兩解.
故選:B.

點(diǎn)評(píng) 本題給出三角形的兩邊和其中一邊的對(duì)角,判斷三角形解的個(gè)數(shù).著重考查了正弦定理、三角形內(nèi)角和定理和特殊角的三角函數(shù)值等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知:cosα+sinα=$\frac{2}{3}$,則$\frac{\sqrt{2}sin(2α-\frac{π}{4})+1}{1+tanα}$的值為-$\frac{5}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓M的方程為x2+y2-2x-2y-6=0,以坐標(biāo)原點(diǎn)O為圓心的圓O與圓M相切.
(1)求圓O的方程;
(2)圓O與x軸交于E,F(xiàn)兩點(diǎn),圓O內(nèi)的動(dòng)點(diǎn)D使得|DE|,|DO|,|DF|成等比數(shù)列,求$\overrightarrow{DE}$•$\overrightarrow{DF}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.曲線$f(x)=\frac{cosx}{2+sinx}$在x=0處的切線方程為( 。
A.$y=-\frac{1}{4}x+\frac{1}{2}$B.$y=-\frac{1}{4}x$C.$y=\frac{1}{4}x+\frac{1}{2}$D.$y=\frac{1}{4}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù).命題q:當(dāng)x∈[$\frac{1}{2}$,2]時(shí),函數(shù)f(x)=x+$\frac{1}{x}$>$\frac{1}{c}$恒成立.如果“p或q”為真命題,“p且q”為假命題,則c的取值范圍是$(0,\frac{1}{2}]∪[1,+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,PD⊥底面ABCD,PA=AB=2,BC=$\frac{1}{2}$PA,BD=$\sqrt{3}$,E在PC邊上.
(1)求證:平面PDA⊥平面PDB;
(2)當(dāng)E是PC邊上的中點(diǎn)時(shí),求異面直線AP與BE所成角的余弦值;
(3)若二面角E-BD-C的大小為30°,求DE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線(k-3)x+(4-k)y+1=0與2(k-3)x-2y+3=0平行,那么k的值為(  )
A.1或3B.1或5C.3或5D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.平面四邊形ABCD中,$∠A={90°},∠B=∠D={60°},AB=\sqrt{3},CD=1$,則AD=( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)滿足:f(x)=2f(2x-1)-3x2+2,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案