9.設(shè)向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=1,|{\overrightarrow b}|=\sqrt{2}$$,\overrightarrow a⊥(\overrightarrow a+\overrightarrow b)$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

分析 由$\overrightarrow{a}$⊥($\overrightarrow{a}$+$\overrightarrow$),得數(shù)量積為0,列出方程求出向量$\overrightarrow a$與$\overrightarrow b$的夾角.

解答 解:∵向量|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,且$\overrightarrow{a}$⊥($\overrightarrow{a}$+$\overrightarrow$),
設(shè)$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,則有$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=0,
即${\overrightarrow{a}}^{2}$+$\overrightarrow{a}$•$\overrightarrow$=12+1×$\sqrt{2}$×cosθ=0,
cosθ=-$\frac{\sqrt{2}}{2}$,
又0≤θ≤π,
∴θ=$\frac{3π}{4}$,
∴$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{3π}{4}$.
故選:C.

點(diǎn)評(píng) 本題主要考查了兩個(gè)向量的數(shù)量積的定義與兩個(gè)向量垂直性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.(x2-x+1)5的展開式中,x3的系數(shù)為( 。
A.-30B.-24C.-20D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.曲線$f(x)=\frac{cosx}{2+sinx}$在x=0處的切線方程為( 。
A.$y=-\frac{1}{4}x+\frac{1}{2}$B.$y=-\frac{1}{4}x$C.$y=\frac{1}{4}x+\frac{1}{2}$D.$y=\frac{1}{4}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,PD⊥底面ABCD,PA=AB=2,BC=$\frac{1}{2}$PA,BD=$\sqrt{3}$,E在PC邊上.
(1)求證:平面PDA⊥平面PDB;
(2)當(dāng)E是PC邊上的中點(diǎn)時(shí),求異面直線AP與BE所成角的余弦值;
(3)若二面角E-BD-C的大小為30°,求DE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線(k-3)x+(4-k)y+1=0與2(k-3)x-2y+3=0平行,那么k的值為( 。
A.1或3B.1或5C.3或5D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式|x+1|<2的解集為(-3,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.平面四邊形ABCD中,$∠A={90°},∠B=∠D={60°},AB=\sqrt{3},CD=1$,則AD=( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知n≥0,試用分析法證明:$\sqrt{n+2}$-$\sqrt{n+1}$<$\sqrt{n+1}$-$\sqrt{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E、F、G分別是AA1、A1B1、A1D1的中點(diǎn).
(Ⅰ)求證:平面EFG∥平面BC1D;
(Ⅱ)在線段BD上是否存在點(diǎn)H,使得EH⊥平面BC1D?若存在,求線段BH的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案