14.已知$α,β∈(\frac{11π}{4},\frac{13π}{4})$,則“tan2α>tan2β”的一個(gè)充分不必要條件是(  )
A.4α+1>4β+2B.${log_{\frac{1}{2}}}2α<{log_{\frac{1}{2}}}2β$
C.(α+1)3>β3D.α=β

分析 根據(jù)充分必要條件的定義結(jié)合三角函數(shù)的性質(zhì)判定即可.

解答 解:由題意得:y=tan2x在($\frac{11π}{4}$,$\frac{13π}{4}$)上遞增,
故tan2α>tan2β,故α>β,
而4α+1>4β+2,
∴α+1>β+2,
∴α>β+1,
故α>β+1是α>β的充分不必要條件,
由${log}_{\frac{1}{2}}^{2α}$<${log}_{\frac{1}{2}}^{2β}$,得:2α>2β,
故α>β,故B是充要條件,
由(α+1)3>β3,得:α+1>β,
故α+1>β是α>β的必要不充分條件,
α=β是α>β的既不充分也不必要條件,
故選:A.

點(diǎn)評(píng) 本題考查了充要條件的判定,考查正切函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=asinx+bx${\;}^{\frac{1}{3}}}$-1,(a,b∈R),若f(lg$\frac{1}{2017}$)=2016,則f(lg2017)=(  )
A.-2016B.2016C.2018D.-2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,△ABC中,三個(gè)內(nèi)角B、A、C成等差數(shù)列,且AC=20,BC=30.
(1)求△ABC的面積;
(2)已知平面直角坐標(biāo)系xOy,點(diǎn)D(20,0),若函數(shù)f(x)=Msin(ωx+φ)(M>0,ω>0,|φ|<$\frac{π}{2}$) 的圖象經(jīng)過A、C、D三點(diǎn),且A、D為f(x)的圖象與x軸相鄰的兩個(gè)交點(diǎn),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知:cosα+sinα=$\frac{2}{3}$,則$\frac{\sqrt{2}sin(2α-\frac{π}{4})+1}{1+tanα}$的值為-$\frac{5}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.正方體ABCD-A1B1C1D1中,則正四面體D-A1BC1的表面積與正方體的表面積之比是( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.(x2-x+1)5的展開式中,x3的系數(shù)為( 。
A.-30B.-24C.-20D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)Z滿足(1-i)z=1+i,則復(fù)數(shù)|Z|=( 。
A.$\sqrt{2}$B.1C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓M的方程為x2+y2-2x-2y-6=0,以坐標(biāo)原點(diǎn)O為圓心的圓O與圓M相切.
(1)求圓O的方程;
(2)圓O與x軸交于E,F(xiàn)兩點(diǎn),圓O內(nèi)的動(dòng)點(diǎn)D使得|DE|,|DO|,|DF|成等比數(shù)列,求$\overrightarrow{DE}$•$\overrightarrow{DF}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線(k-3)x+(4-k)y+1=0與2(k-3)x-2y+3=0平行,那么k的值為(  )
A.1或3B.1或5C.3或5D.1或2

查看答案和解析>>

同步練習(xí)冊(cè)答案