10.已知某三棱錐的三視圖如圖所示,則該三棱錐外接球的表面積是( 。
A.36πB.24πC.12πD.

分析 幾何體復(fù)原為底面是直角三角形,一條側(cè)棱垂直底面直角頂點的三棱錐,擴展為長方體,長方體的對角線的長,就是外接球的直徑,然后求其的表面積.

解答 解:由三視圖復(fù)原幾何體,幾何體是底面是直角三角形,
一條側(cè)棱垂直底面直角頂點的三棱錐;擴展為長方體,也外接于球,
它的對角線的長為球的直徑:$\sqrt{1+1+4}$=$\sqrt{6}$,
該三棱錐的外接球的表面積為:4×π×($\frac{\sqrt{6}}{2}$)2=6π,
故選:D.

點評 本題考查三視圖,幾何體的外接球的表面積,考查空間想象能力,計算能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某手機廠商推出一款6寸大屏手機,現(xiàn)對500名該手機使用者(200名女性,300名男性)進(jìn)行調(diào)查,對手機進(jìn)行打分,打分的頻數(shù)分布表如下:
女性用戶:
分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)2040805010
男性用戶:
分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)4575906030
(Ⅰ)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的波動大。ú灰笥嬎憔唧w值,給出結(jié)論即可);

(Ⅱ)分別求女性用戶評分的眾數(shù),男性用戶評分的中位數(shù);
(Ⅲ)如果評分不低于70分,就表示該用戶對手機“認(rèn)可”,否則就表示“不認(rèn)可”,完成下列2×2列聯(lián)表,并回答是否有95%的把握認(rèn)為性別和對手機的“認(rèn)可”有關(guān);
女性用戶男性用戶合計
“認(rèn)可”手機140180320
“不認(rèn)可”手機60120180
合計200300500
P(K2≥x00.050.01
x03.8416.635
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入x的值為2,則輸出的v值為(  )
A.9×210-2B.9×210+2C.9×211+2D.9×211-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知△ABC中,$AC=2,AB=2\sqrt{7},cos∠BAC=\frac{{2\sqrt{7}}}{7}$且D是BC的中點,則中線AD的長為(  )
A.2B.4C.$2\sqrt{3}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.i為虛數(shù)單位,復(fù)數(shù)$\frac{3+i}{1-i}$的虛部是( 。
A.2iB.2C.-2iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在Rt△ABC中,∠ACB=90°,$\overrightarrow{BD}$=$\overrightarrow{DA}$,$\overrightarrow{AB}$=2$\overrightarrow{BE}$,則 $\overrightarrow{CD}•\overrightarrow{CA}+\overrightarrow{CE}•\overrightarrow{CA}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.對于實數(shù)m>-3,若函數(shù)$y={(\frac{1}{2})^x}$圖象上存在點(x,y)滿足約束條件$\left\{\begin{array}{l}x-y+3≥0\\ x+2y+3≥0\\ x≤m\end{array}\right.$,則實數(shù)m 的最小值為( 。
A.$\frac{1}{2}$B.-1C.-$\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,AD=AP,CD=2AB,CD⊥平面APD,AB∥CD,E為PD的中點.
(Ⅰ)求證:AE∥平面PBC;
(Ⅱ)求證:平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在邊長為1的正方形ABCD中,$2\overrightarrow{AE}=\overrightarrow{EB}$,BC的中點為F,$\overrightarrow{EF}=2\overrightarrow{FG}$,則$\overrightarrow{EG}•\overrightarrow{BD}$=$-\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊答案