分析 配方法化簡(jiǎn)x-x2=-(x-$\frac{1}{2}$)2+$\frac{1}{4}$,從而確定$\frac{1}{\sqrt{x-{x}^{2}}}$≥2,從而解得.
解答 解:∵x-x2=-(x-$\frac{1}{2}$)2+$\frac{1}{4}$,
∴0<x-x2≤$\frac{1}{4}$,
∴0<$\sqrt{x-{x}^{2}}$≤$\frac{1}{2}$,
∴$\frac{1}{\sqrt{x-{x}^{2}}}$≥2,
故答案為:2.
點(diǎn)評(píng) 本題考查了整體思想與配方法的應(yīng)用及轉(zhuǎn)化思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ③④ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a2+b2+c2≥2 | B. | (a+b+c)2≥3 | C. | $\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$≥2$\sqrt{3}$ | D. | abc(a+b+c)≥$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{11}{2}$ | B. | -$\frac{31}{6}$ | C. | $\frac{11}{2}$ | D. | $\frac{31}{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com